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A DYNAMICAL SYSTEMS APPROACH TO THE INTERPLAY
BETWEEN TOBACCO SMOKERS, ELECTRONIC-CIGARETTE SMOKERS

AND SMOKING QUITTERS

SUMMARY

In this thesis, the effect of e-cigarettes on smoking cessation is studied using the
tools of dynamical systems theory. The purpose here is to examine this efficacy by
representing and analysing a non-linear ODE system modelling potential smokers,
tobacco smokers, e-cigarette smokers and quitters. Fundamental theories required
for the interpretation of the behaviour of dynamical systems are given and some
epidemiological models are analyzed.

The natural behaviour of some linear physical systems is quite predictable. Contrary
to that, many natural phenomena are unpredictable. So, we employ non-linear systems
which are more complex and are not exactly suitable for the solution to the problem
at hand as opposed to linear systems. Non-linear systems are ubiquitous throughout
the natural world. As presented in this work, biological systems can be represented by
non-linear systems. For instance, several disease models are generally investigated by
using non-linear mathematical models.

From a wider perspective, mathematical modelling is significant in describing the
smoking cessation models. These models have been examined using ODE systems
in view of the fact that we can analyse the spread and control of smoking with these
systems.

It is well known that smoking is a common social phenomenon in today’s world. Since
smoking is an addiction, some individuals see the use of electronic cigarette as a way
of quitting tobacco smoking. We also know that the prevalence of smoking extremely
affects the social behaviour of people in a population. Therefore, peer pressure is quite
substantial in starting or quitting the act of smoking.

This thesis consists of three chapters which are shaped by the above information.

In the first chapter, necessary elementary definitions and examples about stability
analysis of dynamical systems are given. The classification of the equilibrium points
is listed for two- and three-dimensional systems.

Chapter 2 covers the basic epidemiological models. Mathematical analysis of these
epidemiological models is done all in detail. Importance of the basic reproduction
number is examined with several infectious disease models. These models are
diversified by adding different compartments or parameters. The analysis of these
epidemic models is mostly done by non-dimensionalisation.

In Chapter 3, the proposed model to analyze the effect of electronic cigarettes on
smoking cessation is given and described in detail. The standard term of "peer
pressure" is used in this model. As part of the analysis, some theoretical results are
obtained by the Next Generation Matrix Method and the Lyapunov Function Method.

xvii



Furthermore, some numerical simulations are plotted in the Mathematica using data
obtained from the literature. Using this data, we verified our theoretical and numerical
results by only slightly changing the parameters. We changed these parameters in a
way to ensure that the equilibrium points are biologically meaningful.

In the conclusions section, the significance of the basic reproduction number is
theoretically confirmed in numerical results. Theoretically observed bifurcation is
confirmed in numerical illustrations. Thanks to the graphics used in our work, we
noticed that the effect of using electronic cigarette on smoking cessation takes a long
time to emerge.

As a conclusion of our work, we are under the impression that using e-cigarettes is
quite effective to decrease the number of tobacco smokers, but our analysis indicates
that it does not have a remarkable effect on the number of quitters. We conclude that
e-cigarette is not a tool to quit tobacco smoking. We therefore recommend that, the
society should be made conscious about the correct methods of quitting smoking and
create awareness about the right methods of smoking cessation.

Keywords: Linear stability analysis, Lyapunov function, Dynamical systems,
Epidemiological models.
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SİGARA İÇENLER, ELEKTRONİK SİGARA İÇENLER
VE SİGARAYI BIRAKANLAR ARASINDAKİ ETKİLEŞİME YÖNELİK

BİR DİNAMİK SİSTEMLER YAKLAŞIMI

ÖZET

Bu tezde, elektronik sigara kullanımının sigara bırakma üzerindeki etkisi matematiksel
modelleme yöntemleriyle oluşturulan dinamik bir sistem üzerinden incelenmiştir.
Buradaki asıl amaç; sigara içme potansiyeline sahip bireyler, sigara içenler, elektronik
sigara içenler ve sigarayı bırakan bireyler arasında yer alan dinamiği lineer olmayan bir
adi diferansiyel denklem modeli ile temsil ederek bu modelin analizini yapmaktır. Bu
sebeple, dinamik sistemlerin davranışlarını yorumlamak için gerekli bilgiler verilmiş
ve bu bilgiler ışığında bazı salgın hastalık modellerinin dinamik yapıları incelenmiştir.

Hepimizin bildiği gibi, lineer denklemlerle modellenen fiziksel sistemlerin davranışları
oldukça tahmin edilebilirken, birçok doğa olayı lineer olmayan bir modellemeyi
gerekli kılar. Lineer olmayan bu sistemler, lineer sistemlere göre çok daha karmaşıktır
ve bu denklemleri kesin çözümlerini elde etmek çoğu zaman mümkün değildir. Buna
rağmen, bazı metotlar yardımıyla lineer olmayan dinamik sistemlerin davranışları
hakkında tahminler yapılabilmektedir.

Lineer olmayan sistemler, yeryüzünde gerçekleşen doğal olayların hemen hemen
hepsinde yer alır. Bu çalışmada da yer verildiği üzere, biyolojik sistemler lineer
olmayan dinamik sistemler aracılığıyla temsil edilebilirler. Birçok bulaşıcı hastalık
matematiksel modelleme ile temsil edilmektedir. Örneğin, veba ve grip bu yolla
modellendirilmiş salgın hastalıklardandır.

Daha geniş bir perspektiften bakacak olursak, matematiksel modelleme yöntemi
sadece salgın hastalıkların ve sigara bırakma modellerinin temsilinde değil farklı di-
namiklerin modellenmesinde de kullanılmaktadır. Bu modellemelere ek olarak; alkol,
eroin, uyuşturucu madde kullanımları, iklim-bitki örtüsü ve av-avcı dinamikleri de
benzer metotlarla oluşturulmaktadır. Ayrıca, oluşturulan bu adi diferansiyel denklem
sistemleriyle bahsedilen salgın modellerinin kontrolünün analizi yapılabilmektedir.

Günümüz dünyasında sigara kullanımının yaygın bir sosyal olay olduğu herkes
tarafından iyi bilinmektedir. Sigara içmek, vücuttaki hemen hemen her organa
zarar verir ve çeşitli hastalıklara sebep olur. Sigara içmek bir bağımlılıktır ve bu
bağımlılıktan kurtulabilmek için çeşitli tedavi yöntemleri vardır. Sigara bıraktırma
programları, nikotin çikletleri şeklindeki tedavi yöntemleri var olduğu gibi toplumdaki
bazı bireyler elektronik sigara kullanmayı da sigarayı bırakmak için bir yol olarak
görmektedir. Tütün sigarası nikotin, arsenik ve karbonmonoksit de dahil olmak üzere
7000’den fazla bileşene sahip iken elektronik sigara yalnızca nikotin içermektedir.
Diğer bir ifadeyle elektronik sigara, tütün sigarasına oranla daha az zararlıdır. Bu
sebepler doğrultusunda, bu çalışmadaki modelde elektronik sigara kullanımının sigara
bırakma üzerindeki etkisi analiz edilmiştir.

Akran baskısı, bireylerin sigara içme deneyimini erken yaşta gerçekleştirmelerinde
etkili olduğu gibi ilerleyen yaşlarda sigara içmeye devam etme istekleri üzerinde de
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etkili olan önemli bir faktör olarak kabul edilmektedir. Diğer bir ifadeyle, sigara içme
yaygınlığının artışında toplumdaki bireylerin sosyal davranışlarının etkisinin büyük
olduğu oldukça açıktır. Bu sebepler doğrultusunda, bu çalışmada önerilen model
"akran baskısı" göz önünde bulundurularak oluşturulmuştur.

Yukarıda bahsedildiği gibi lineer olmayan sistemlerdeki dinamik geçişlerin incelendiği
bu tez çalışması üç bölümden oluşmaktadır.

Birinci bölümde, dinamik sistemlerin kararlılık analizini yapabilmek için gerekli
olan temel tanımlar verilmiş ve birkaç diferansiyel denklem sisteminin kararlılık
analizi yapılmıştır. İki boyutlu ve üç boyutlu sistemlere ait olan denge noktalarının
sınıflandırılması yapılmıştır. Ayrıca Lyapunov Fonksiyon Metodu hakkında bilgi
verilmiş ve uygun Lyapunov fonksiyonunun seçilmesiyle basit bir diferansiyel
denklem sisteminin kararlılık analizi yapılmıştır.

İkinci bölüm, temel salgın hastalık modellerini kapsamaktadır. Bu bölümde SI, SIS,
SIR, SIRS ve SEIR isimleri ile nitelendirilen temel hastalık modelleri verilmiş ve bu
modellerin detaylı analizleri yapılmıştır. Bu modellemelere ek olarak, sadece doğal
yollarla gerçekleşen ölümlerin yer aldığı ve hem doğal hem de hastalığa bağlı yollarla
gerçekleşen ölümlerin yer aldığı temel SIR modelleri üzerinde çalışılmış ve yine
bu modellerin kararlı olma durumları analiz edilmiştir. Salgın hastalıkların kontrol
metotlarından biri olan aşılama yöntemi göz önünde bulundurularak oluşturulan
bir SIR modelinin detayları verilmiştir. Bu modelleme ile salgın hastalıkların
yayılımını kontrol etmek için etkili olduğu düşünülen bazı stratejilerden bahsedilmiştir.
Bahsedilen hastalık modellerinin tümünün incelenmesiyle birlikte temel üreme
oranının önemi ortaya konmuştur. Dinamik geçişlerin incelendiği bu hastalık
modellerinin kararlılık analizi yapılırken boyutsuzlaştırma yöntemi kullanılmıştır.

Üçüncü bölümde, elektronik sigaranın sigarayı bırakma üzerindeki etkisini analiz
etmek için önerilen model tüm detaylarıyla birlikte verilmiştir. Bu modelde,
sigara içenlerin olduğu gruptan elektronik sigara içenlerin olduğu gruba geçiş
“akran baskısı” terimiyle modellenmiştir. Yapılan kararlılık analizinde Lyapunov
Fonksiyon Yöntemi’nden yararlanılmış ve temel üreme oranının saptanmasında
bir metot olarak kullanılan Yeni Nesil Matris Yöntemi ile sistemin temel üreme
oranı ayrıca gösterilmiştir. Ayrıca; bazı nümerik simülasyonlar, literatürde yer
alan bazı veriler kullanılarak Mathematica’da çizdirilmiştir. Bu veriler üzerinde
oldukça küçük değişiklikler yapılmış ve bu verilerle oluşturulan grafiklerle de teorik
sonuçların doğruluğu gösterilmiştir. Sistemdeki denge noktalarının biyolojik olarak
anlamlı olmasını sağlamak amacıyla bu veriler üzerinde oldukça küçük değişiklikler
yapılmıştır.

Sonuçların verildiği kısımda ise temel üreme oranının öneminin hem teorik hem de
nümerik olarak gözlemlendiğinden bahsedilmiştir. Yapılan nümerik simülasyonların,
sistemde çatallanma olduğuna dair ortaya koyduğumuz teorik sonuçları doğruladığı
görülmüştür. Çalışmalarımızda elde edilen grafikler sayesinde, elektronik sigara
kullanımının sigarayı bırakma üzerinde kayda değer bir etki bırakması için çok uzun
bir zaman geçmesi gerektiği gözlemlenmiştir.

Çalışmalarımızın bir sonucu olarak, elektronik sigara kullanımının tütün sigara
kullanımını bir dereceye kadar azalttığını ancak sigarayı bırakanların sayısını her
zaman artırmadığını gözlemledik. Bu nedenle; elektronik sigara kullanımının,
tütün sigara kullanımını kontrol etmek için bir araç olarak görülmemesi gerektiği
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sonucuna vardık. Dolayısıyla; elektronik sigara kullanımının bir tedavi yöntemi olarak
görülmesinin önüne geçebilmek için, toplumun sigarayı bırakma metotları hakkında
doğru şekilde bilinçlendirilmesi gerektiğini düşünüyor ve bununla ilgili farkındalık
oluşturulacak çalışmalarda bulunulmasını tavsiye ediyoruz.

Anahtar Kelimeler: Lineer kararlılık analizi, Lyapunov fonksiyonu, Dinamik
sistemler, Salgın hastalık modelleri.
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1. INTRODUCTION

In this chapter, we give the necessary elementary definitions and examples about

stability analysis of dynamical systems. Theories on dynamical systems have been

well established in many fundamental works. For more details, see [3,4,18–20,24–29].

1.1 Basic Definitions

Let f : Rn→ Rn and consider the ODE

dx
dt

= f (x), (1.1)

with the initial condition

x(0) = x0 (1.2)

In (1.1), the time derivative is also represented as ẋ = dx
dt . Besides, a differential

equation of the form (1.1) is called autonomous since the independent variable t can

not be explicitly found.

From Basic Theory of ODE’s, we know that if f is Lipschitz continuous in a

neighbourhood of x0, then (1.1) and (1.2) has a unique solution

x : I→ Rn, x(0) = x0

where I ⊂R is the maximal interval of existence. Here we will assume that [0,∞)⊂ I.

This ensures that we can take the limit of the solution as t goes to infinity.

Let x(t,x0) be the unique solution of (1.1) and (1.2) and x∗ be an equilibrium solution

of (1.1) that is

f (x∗) = 0.

This means x∗ does not change in time. Also note that for an equilibrium solution

x(t,x∗) = x∗, ∀t ≥ 0.

An equilibrium solution is also known as a fixed point, critical point, singular point,

or steady-state solution. Moreover, it is common to use the term "fixed point" when

referring to a map and "equilibrium" when referring to a flow.
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Example 1.1.1 As an example, let us find the fixed points of the differential equation

ẋ = x2−4.

Solution 1.1.1 The differential equation, which is given above, can be written as

dx
dt

= (x−2)(x+2).

Since the definition of a fixed point is dx
dt = 0, we get

(x−2)(x+2) = 0

Thus, the differential equation has two fixed points which are x∗1 =−2 and x∗2 = 2.

Definition 1.1.1 The derivative of a map f = ( f1, . . . , fm) : Rn→Rm at an x is written

as D f (x) and organized into an m× n matrix called the partial derivative matrix or

Jacobian matrix of f at x.

D f (x) =


∂ f1
∂x1

∂ f1
∂x2

. . . ∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

. . . ∂ f2
∂xn

...
... . . .

∂ fm
∂x1

∂ fm
∂x2

. . . ∂ fm
∂xn


Definition 1.1.2 Let A be an n× n square matrix. λ is called an eigenvalue of A =

(ai j) if there exists a nonzero column vector x providing

Ax = λx

or, equivalently,

(A−λ I)x = 0, (1.3)

where λ is scalar and I is n×n identity matrix.

The nonzero vector x is called an eigenvector of A corresponding to the eigenvalue λ .

By definition, for an eigenvector x, Ax must be a scalar multiple of x. The equation

given by (1.3), has a solution if and only if the characteristic polynomial of A is a

singular matrix, that is, equivalently

p(λ ) = det(A−λ I) =

∣∣∣∣∣∣∣∣∣
a11−λ a12 . . . a1n

a21 a22−λ . . . a2n
...

... . . . ...
an1 an2 . . . ann−λ

∣∣∣∣∣∣∣∣∣= 0.
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In other words, the roots of the characteristic polynomial are exactly the eigenvalues

of A.

1.2 Stability Analysis of the Equilibrium Points

We are interested in interpreting the long time behaviour of fixed points of the

dynamical systems. Particularly, the real objective is trying to understand whether

a given equilibrium solution is stable or not. We make the following definitions, see

also [21].

Definition 1.2.1 The equilibrium solution x∗ of (1.1) is called neutrally stable if for

all ε > 0, there exists a δ > 0 such that if

‖x0− x∗‖< δ =⇒ ‖x(t,x0)− x∗‖< ε, ∀t ≥ 0.

Definition 1.2.2 The equilibrium solution x∗ of (1.1) is called unstable if the solution

is not neutrally stable.

Definition 1.2.3 The equilibrium solution x∗ of (1.1) is locally asymptotically stable

if

1. It is neutrally stable, and

2. There exists a δ (t0)> 0 such that

‖x0− x∗‖< δ =⇒ lim
t→∞
‖x(t)− x∗‖= 0.

As in [22] and [23], the above definitions of stability can be paraphrased as follows.

• An equilibrium point x∗ is neutrally stable if any solution with an initial condition

close enough to x∗ will remain close to x∗ for all future times.

• An equilibrium point x∗ is called locally asymptotically stable if, in addition to

neutral stability, any solution starting from any nearby initial condition actually

approaches to x∗ as t goes to infinity.

• An equilibrium point is said to be unstable if it is not neutrally stable.

We note here that the above definitions are local in character. That is if the stability is

determined with respect to small perturbations.
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1.2.1 Linear stability analysis

The first step in the determination of stability of an equilibrium point x = x∗ is by a

linear analysis.

Let f : Rn→ Rn and consider

ẋ = f (x) (1.4)

which is a nonlinear system.

We also consider that A = (ai j) is an n×n matrix which is the Jacobian matrix of f at

the equilibrium point x∗. That is

A = D f (x∗). (1.5)

Now we consider the linearized system

ẏ = Ay, y ∈ Rn. (1.6)

of (1.4) around x = x∗.

The eigenvalue problem of A is given by

Ay = λy.

The eigenvalues of A are roots of the characteristic polynomial p(λ ).

p(λ ) = det(A−λ I) = 0

Theorem 1.2.1 Let D f (x∗) be the Jacobian matrix at the equilibrium solution x∗ of

(1.4):

• An equilibrium point x = x∗ is locally asymptotically stable if

Re(λ )< 0, for all eigenvalues λ of D f (x∗)

• An equilibrium point x = x∗ is unstable, if Re(λ )> 0 for at least one eigenvalue.

We particularly demonstrate the case where A is a 2×2 matrix.

Let

A =

[
a b
c d

]
.
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It can be easily seen that

tr(A) = a+b and det(A) = ad−bc

in the definitions of the trace and determinant A. The eigenvalues of A are roots of the

characteristic polynomial p(λ ). Let us construct the characteristic polynomial:

p(λ ) = det(A−λ I) =
∣∣∣∣a−λ b

c d−λ

∣∣∣∣
= (a−λ )(d−λ )−bc

= λ
2− (a+d)λ +ad−bc

= λ
2− tr(A)λ +det(A).

If we use the quadratic formula, then the eigenvalues of A matrix can be written as

λ1,2 =
tr(A)∓

√
tr(A)2−4det(A)

2
.

The classification of the equilibrium points are listed below and shown in Figure (1.1).

• The equilibrium point is a stable node if λ1 and λ2 are real and λ2 < λ1 < 0.

• The equilibrium point is an unstable node if λ1 and λ2 are real and λ2 > λ1 > 0.

• The equilibrium point is a saddle if λ1 and λ2 are real and λ1 < 0 < λ2.

• The equilibrium point is a center if λ1 = λ 2 = iµ with µ ∈ R\{0}.

• The equilibrium point is a stable focus if λ1 and λ2 are complex-conjugate and

Re(λ1,2 )< 0.

• The equilibrium point is a unstable focus if λ1 and λ2 are complex-conjugate and

Re(λ1,2 )> 0.

The stability analysis of the equilibrium points is given in Table (1.1).

5



τ = Tr(A)

δ = Det(A)

λ1 λ2

(A) Stable Node

λ1

λ2

(B) Stable Focus

λ1

λ2

(C) Unstable Focus

λ1 λ2

(D) Unstable Node

λ1 λ2

(E) Saddle

τ2 = 4δ

Figure 1.1 : Classification of phase portraits in the (τ,δ )-plane.

Example 1.2.1 As an example, let us classify the equilibrium points of the following

non-linear system

f : R2→ R2, f (x) =
(

x2
1− x2

2−1
2x2

)
.

Solution 1.2.1 The system has two equilibrium points which are (−1,0) and (1,0). It

can be easily seen below

f (x1,x2) = (0,0) ⇐⇒ x2
1− x2

2−1 = 0 and 2x2 = 0.

The Jacobian matrix of f (x) can be calculated as follows:

D f (x) =
(

2x1 −2x2
0 2

)
.

Then the Jacobian matrices can be evaluated at the equilibrium points

(−1,0) and (1,0),

respectively

J(x) |(−1,0)=

(
−2 0
0 2

)
and J(x) |(1,0)=

(
2 0
0 2

)
.

Thus, it can be obviously seen that
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• The eigenvalues, which corresponds to J(x) |(−1,0), are λ1 = −2 and λ2 = 2. The

equilibrium point is a saddle.

• The eigenvalues, which corresponds to J(x) |(1,0), are λ1,2 = 2. The equilibrium

point is a source.

1.2.2 Global stability analysis

In this section we will discuss the global stability of equilibria.

Definition 1.2.4 The equilibrium point x∗ of (1.1) is called globally asymptotically

stable, if

lim
t→∞
‖x(t,x0)− x∗‖= 0, ∀x0 ∈ Rn

Thus, unlike local stability, a globally asymptotically stable fixed point is a fixed point

which is asymptotically stable with respect to any perturbation ‖x0− x∗‖.

Global stability of an equilibrium point means that the system will achieve the

equilibrium point from any possible beginning point.

We will now discuss a technique about determining the global stability known as

Lyapunov Function Method. Before continuing on to this method, we will firstly

make the definition of Lyapunov Function.

Lyapunov functions are non-negative definite functions that decrease in time along the

orbits of a dynamical system:

Definition 1.2.5 Let a function V (x) be continuously differentiable in an open set U in

Rn, V : U →R. The function V (x) is called the Lyapunov function for an autonomous

system

ẋ = f (x), (1.7)

if the following conditions are satisfied:

1. V (x)> 0 for all x ∈U\{x0},

2. V (x0) = 0,

3. V̇ ≤ 0 for all x ∈U.
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Theorem 1.2.2 Let f : Ũ ⊂ Rn 7→ Rn and x0 be an equilibrium point of (1.4) and

V : U ⊂ Ũ 7→ Rn be a Lyapunov function. Then,

• x0 is stable if V̇ (x)≤ 0 for all x ∈U.

• x0 is asymptotically stable if V̇ (x)< 0 for all x ∈U\{x0}. Moreover, U is the basin

of attraction of the equilibrium x0. That is

limx(t, x̃) = x0, ∀x̃ ∈U (1.8)

In particular, if U = Ũ then we say that x0 is globally asymptotically stable.

Example 1.2.2 As an example, let us determine the stability of

ẋ1 =−x3
2

ẋ2 = x3
1

(1.9)

Solution 1.2.2 Firstly, we obtain the equilibrium points of the system (1.9).

f (x0) = 0 implies that

−x3
2 = 0 and x3

1 = 0.

It is easy to see that x1 = 0 and x2 = 0. So, we have one equilibrium point as x0 =(0,0).

Let us construct the Lyapunov Function which satisfies V (x0) = 0 as follows:

V (x) = x4
1 + x4

2

It can be clearly seen that V (x)> 0. We now find the derivative of V (x).

V̇ (x) = 4x3
1ẋ1 +4x3

2ẋ2

= 4x3
1(−x3

2)+4x3
2(x

3
1)

= 4(−x3
1x3

2 + x3
1x3

2)

= 0

Then V̇ (x) = 0 implies V (x) = c. So, the solution lies on the closed curves

x4
1 + x4

2 = c2.

Thus, the origin is a stable equilibrium point according to Theorem (1.2.2).
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1.2.3 Stability of three-dimensional systems

We have mostly discussed about stability of the two dimensional system. However,

we will study on the stability of the three-dimensional system on Chapter 3. For this

reason, we study on the stability of the Jacobian matrix of a three-dimensional system.

The Jacobian matrix of a three-dimensional system has three eigenvalues. One of these

eigenvalues must be a real number and the other two eigenvalues types can change.

The classification of the system depends on the types and signs of the eigenvalues.

(See Table 1.2).

The classification of the equilibrium points are given below:

• The equilibrium point is a stable node if all eigenvalues are real and negative.

• The equilibrium point is a unstable node if all eigenvalues are real and positive.

• The equilibrium point is a saddle if all eigenvalues are real and at least one of them

is positive and at least one is negative.

• The equilibrium point is a stable focus-node if it has one real eigenvalue and a pair

of complex-conjugate eigenvalues with all eigenvalues having negative real parts.

• The equilibrium point is a unstable focus-node if it has one real eigenvalue and

a pair of complex-conjugate eigenvalues with all eigenvalues having positive real

parts.

• The equilibrium point is a saddle-focus if it has one real eigenvalue with the sign

opposite to the sign of the real parts of a pair of complex-conjugate eigenvalues.

10



Table 1.2 : Stability analysis of hyperbolic (that is those with eigenvalues with
non-zero real part) equilibrium points of the three-dimensional system.

Classification Types of Roots Sign of Roots Behaviour Stability

Real
Root

Complex
Root

Node
λ1,λ2,λ3 - λ1,λ2,λ3 < 0 Stable Node Stable

λ1,λ2,λ3 - λ1,λ2,λ3 > 0 Unstable Node Unstable

Focus-node
λ1 λ2 = λ̄3

λ1,Re(λ2) < 0,
Re(λ3)< 0

Stable-focus node Stable

λ1 λ2 = λ̄3
λ1,Re(λ2) > 0,
Re(λ3)> 0

Unstable-focus
node

Unstable

Saddle λ1,λ2,λ3 –

At least one of
them is positive
and at least one of
them is negative

Saddle Unstable

Saddle-focus λ1 λ2 = λ̄3

λ1 has opposite
sign of Re(λ2)
and Re(λ3)

Saddle-focus Unstable

11
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2. BASIC EPIDEMIOLOGICAL MODELS

In this section, we summarize the well-known results on several epidemiological

models in increasing complexity. For detailed treatment of the subject matter, see

[5, 6, 29, 34, 35]. We will start with the most basic model which is the SI model.

2.1 The SI Model

In this model, we divide the population into two distinct classes:

• Susceptible: S(t), denotes the people who can catch the disease.

• Infective: I(t), denotes the people who have the disease and can transmit it.

In the classical models we consider the size of the population as a constant, N(t), that

is S(t)+ I(t) = N(t).

The transfer diagram for SI model is as in Figure (2.1).

Susceptible
S(t)

Infective
I(t)

β

Figure 2.1 : Flowchart of SI model.

The SI model can be written as the following ordinary differential equation(ODE):

dS
dt

=−βSI

dI
dt

= βSI = β I(N− I)
(2.1)

where β > 0 is the infection rate. Here, the infected population obey the logistic

equation.

It can be clearly seen that the disease is contagious. Once infected, without treatment

individuals stay infected for the rest of their lives. We can also see from the logistic

equation that this epidemic will always spread and will eventually infect all susceptible

individuals.
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Mathematically, the system has two equilibria.

• The disease-free equilibrium is

E0 = (S, I) = (N,0).

• The endemic equilibrium is

Ee = (S, I) = (0,N).

If we view the sign pattern of the (2.1), then we achieve the following results:

• dS
dt < 0, which shows that the numbers of susceptible individuals always decrease,

• dI
dt > 0, which shows that the numbers of infected individuals always increase,

when S > 0 and I > 0.

The corresponding phase plane to the SI model is given by Figure (2.2).

S

I

N

N
S+ I = N

STA
BLE

UNSTA
BLE

Figure 2.2 : The phase plane of the SI model.

2.2 The SIS Model

Similar to the SI model, we have two distinct classes as S(t) and I(t). This model is

convenient for diseases which commonly have repeating infections. The SIS model

does not include recovery. The infective individuals can be susceptible again. The

progress of individuals is shown by the transfer diagram which is given by Figure

(2.3).
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Susceptible
S(t)

Infective
I(t)

β

γ

Figure 2.3 : Flowchart of SIS model.

The SIS model can be written as the following system:

dS
dt

=−βSI + γI

dI
dt

= βSI− γI
(2.2)

where β is the infection rate and γ is the rate of recovery. (γ,β > 0)

2.2.1 Analysis of the SIS model

Let us note that

R0 =
βN
γ

.

Theorem 2.2.1 [5, p. 88]

If R0 < 1, the disease dies out, but if R0 > 1, it remains in the population.

Remark 1 According to the [30, p. 419], Basic Reproduction Number "the average

number of secondary infecteds, produced by one typical primary infected person in a

completely uninfected population". In other words, it shows the measurement of the

transmission potential of a disease. It is denoted by R0 and sometimes termed basic

reproductive rate or basic reproductive ratio. This is the most important parameter of

a disease because it shows that the magnitude of the epidemic.

The proof of the theorem in (2.2.1) is given following steps.

Step 1: As a first step in analysing the SIS model we could simplify the equations by

non-dimensionalisation by defining

u =
S
N
, v =

I
N
, τ = γt.
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The system becomes
du
dτ

=− (R0u−1)v

dv
dτ

=(R0u−1)v
(2.3)

where R0 =
βN
γ

.

Step 2: (Invariant of the system)

The new system is to be solved on the one-dimensional simplex

Ω = {(u,v) | 0≤ u≤ 1,0≤ v≤ 1,u+ v = 1}.

In the non-dimensionalised system,

R0 =
βN
γ

is the basic reproduction number. The interpretation of this number is as follows:

• βN represents the rate at which an infected individual can infect a susceptible

population of N capacity with random contacts.

• 1
γ

represents the expected duration of time in which such an infectivity becomes

contagious.

Under the interpretations listed above, we can say that R0 is the expected number of

infectious contacts made by such an infective individual.

Step 3: We should find the equilibrium points of the system (2.3).

du
dτ

= 0 =⇒ (R0u−1)v = 0.

We have seen that

v = 0 or u =
1

R0

from the last equation. Using

u+ v = 1

we obtain two equilibrium points such as

E0 = (1,0) and E1 = (
1

R0
,1− 1

R0
)

E0 is called the disease-free equilibrium and E1 is called the endemic equilibrium.

It can be obviously seen that the endemic equilibrium does not exist when R0 < 1.
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We can now substitute v = 1− u in the first equation of the system (2.3) and the

equation becomes
du
dτ

=−(R0u−1)(1−u). (2.4)

There are two cases we need to examine here. We criticize the possible sign patterns

for the cases R0 < 1 and R0 > 1.

Case 1: Let us assume that R0 < 1.

It can be clearly seen that

du
dτ

> 0 for 0≤ u < 1.

The solution trajectories can be sketched in (1,0) as in Figure (2.4).

u(t)

1 2 3 4 5 6
t (time)

0.2

0.4

0.6

0.8

1.0

u (Susceptible Fraction)

Figure 2.4 : SIS Epidemic, R0 < 1.

This figure shows that the infection will die out eventually.

The corresponding phase plane to the SIS model when R0 < 1 is given by Figure (2.5).

S

I

N

N
S+ I = N

STA
BLE

Figure 2.5 : The phase plane of the SIS model when R0 < 1.
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Case 2: Let us assume that R0 > 1.

If we view the sign pattern of the (2.4), then we achieve the following results:

• du
dτ

> 0 if 0≤ u < 1
R0

• du
dτ

< 0 if 1
R0

< u≤ 1.

Under the conditions listed above, the solution trajectories can be sketched as seen in

(Figure 2.6).

(Figure 2.6) shows that the infection will reach an equilibrium.

1 2 3 4 5 6
t (time)

0.2

0.4

0.6

0.8

1.0

u (Susceptible Fraction)

Figure 2.6 : SIS Epidemic, R0 > 1. Dashed line shows that 1
R0

.

The corresponding phase plane to the SIS model when R0 > 1 is given by Figure (2.7).

S

I

N

N
S+ I = N

STA
BLE

UNSTA
BLE

Figure 2.7 : The phase plane of the SIS model when R0 > 1.
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2.3 The SIR Model

The pioneer work in epidemiology has been done by Kernack and McKendrick, [31].

Unlike the other models, the SIR model consist of three compartments labeled S,

I and R. As we know, S(t) and I(t) represent the susceptibles and the infectives,

respectively. In addition to that, R(t) represents the number of individuals who have

been infected and then recovered from the disease or who are immune, dead, or

otherwise.

The dynamics of S(t), I(t) and R(t) are shown by the following system:

dS
dt

=−βSI

dI
dt

= βSI− γI

dR
dt

= γI

(2.5)

where β is the infection rate and γ is the recovery rate. (γ,β > 0)

We assume here that we can neglect natural birth or death. Therefore, the population

size N is a constant and N(t) = S(t)+ I(t)+R(t).

The structure of the SIR model represented by the transfer diagram as in Figure (2.8).

Susceptible
S(t)

Infectives
I(t)

Recovered
R(t)

β γ

Figure 2.8 : Flowchart of the SIR model.

The mathematical formulation of the SIR model is completed with the following initial

conditions

S(0) = S0, I(0) = I0, R(0) = 0.

2.3.1 Analysis of the SIR model

Step 1: Let us non-dimensionalise the system by defining

u =
S
N
, v =

I
N
, w =

R
N
, τ = γt.

If we consider the first equation of the system (2.5),

1
N

1
γ

dS
dt

=
−βSI

N
N
N

1
γ

=⇒
d( S

N )

d(γt)
=
−βN

γ

S
N

I
N
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then the equation becomes
du
dτ

=−R0uv

where R0 =
βN
γ

is the basic reproduction number.

As in the first equation we can non-dimensionalise the second and third equations as

follows:
dI
dt

= I(βS− γ) =⇒ dv
dτ

= v(R0u−1)

dR
dt

= γI =⇒ dw
dτ

= v

Namely, the system becomes
du
dτ

=−R0uv

dv
dτ

= v(R0u−1)

dw
dτ

= v

(2.6)

where R0 =
βN
γ

.

Step 2: (Invariant of the system)

The equations are to be solved on the two-dimensional simplex u+ v+w = 1. We can

find the simplex under the conditions listed below:

• We simply see that 0≤ u≤ 1, 0≤ v≤ 1 and 0≤ w≤ 1.

• Adding together the equations in the (2.6) system , we obtain

du
dτ

+
dv
dτ

+
dw
dτ

= 0.

We integrate this equation and find

u(τ)+ v(τ)+w(τ) = u(0)+ v(0)+w(0) = 1

Now, we can simply construct the two-dimensional simplex as

Ω = {(u,v,w) | 0≤ u≤ 1,0≤ v≤ 1,0≤ w≤ 1,u+ v+w = 1}.

Step 3: Let us find the equilibrium points of the system (2.6).

Equilibria of the system are given by u∗ = c, v∗ = 0, w∗ = 1− c and c is any number

in [0,1]. Thus there are infinitely many equilibria given by

Ec = (c,0,1− c), 0≤ c≤ 1. (2.7)
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In this model, the endemic equilibrium does not show up and there are infinitely many

disease-free equilibria as given below:

E0 = (u∗,0,1−u∗).

It demonstrates that the u-axis is a nullcline for (2.6), namely, any point on it is a steady

state.

We have two cases now:

Case 1: Let us assume that R0 > 1.

We can easily see that
du
dτ

< 0

and
dv
dτ

> 0 if u >
1

R0
(2.8)

dv
dτ

< 0 if u <
1

R0
(2.9)

since 0≤ u≤ 1,0≤ v≤ 1.

Without calculation, we can estimate the qualitative behaviour by the solution

trajectories as seen in Figure (2.9).
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Figure 2.9 : SIR Epidemic, R0 > 1. Dashed line shows that the value of 1
R0

.

We can interpret the case R0 > 1 by the above figure as given below:

• If c < 1
R0

then all the equilibria are neutrally stable. Namely, the disease dies out

when c < 1
R0

.
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• If c > 1
R0

then all the equilibria are unstable.

Case 2: Let us consider that R0 < 1.

In the similar way, it is clear to see that

du
dτ

< 0 and
dv
dτ

< 0.

Under these circumstances, the solution trajectories is sketched as in Figure (2.10).
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Figure 2.10 : SIR Epidemic, R0 < 1.

We see that all the equilibria are neutrally stable when R0 < 1.

2.4 The SIRS Model

In this model, the total population N is classified into three compartments as it is in the

SIR model. Susceptibles are denoted by S, infectives by I and recovereds by R. As in

the SIR model, susceptible individuals infected by infective individiuals gain immunity

after getting infected and recover. Yet, for some infected individuals, this gained

immunity may disappear after some time. In other words, the recovered compartment

will be free of infection and rejoin the susceptible individuals department.

The structure of the SIRS model is shown in Figure (2.11).
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Susceptible
S(t)

Infective
I(t)

Recovered
R(t)

β γ

µ

Figure 2.11 : Flowchart of SIRS model.

The dynamics of S(t), I(t) and R(t) are written by the following differential equations

dS
dt

=−βSI +µR

dI
dt

= βSI− γI

dR
dt

= γI−µR

(2.10)

where β is the infectious rate, γ is the cured rate and µ is the transfer rate from

recovered individuals to susceptible individuals. (γ,β ,µ > 0)

The total population N is a constant because we ignored the natural birth and death. In

other words, it is represented by N(t) = S(t)+ I(t)+R(t).

Further, we have initial conditions

S(0) = S0, I(0) = I0 and R(0) = 0

corresponding to the SIRS system.

Let us now review the stability of the SIRS model.

2.4.1 Analysis of the SIRS model

Step 1: In order to simplify, we non-dimensionalise the system (2.10) by defining

u =
S
N
, v =

I
N
, w =

R
N
, τ = t(γ +µ).

Primarily, we consider the first equation of the system (2.10). Let us divide the system

by N and (γ +µ). Then, the equation becomes

d( S
N )

d((γ +µ)t)
=
−β

(γ +µ)

S
N

I +
µ

(γ +µ)

R
N
.

This new equation is still dimensional. This is the reason, why we divide and multiply

the first term in the right hand side of the equation by N, respectively. Now, the last
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equation becomes

d
( S

N

)
d((γ +µ)t)

=
−βN
(γ +µ)

S
N

I
N
+

µ

(γ +µ)

R
N
.

We now substitute the u, v and w terms and we get

du
dτ

=
−βN
(γ +µ)

uv+
µ

(γ +µ)
w.

In the similar method, we can non-dimensionalise the second and third equations of

the system (2.10) as below:

d
( I

N

)
d((γ +µ)t)

=
βN

(γ +µ)

S
N

I
N
− γ

(γ +µ)

I
N

=⇒ dv
dτ

=
βN

(γ +µ)
uv− γ

(γ +µ)
v

d
( R

N

)
d((γ +µ)t)

=
γ

(γ +µ)

I
N
− µ

(γ +µ)

I
N

=⇒ dw
dτ

=
γ

(γ +µ)
v− µ

(γ +µ)
w

Namely, we can indicate the non-dimensionalised system with the following

differential equations:
du
dτ

=− βN
(γ +µ)

uv+
µ

(γ +µ)
w

dv
dτ

=
βN

(γ +µ)
uv− γ

(γ +µ)
v

dw
dτ

=
γ

(γ +µ)
v− µ

(γ +µ)
w

(2.11)

Step 2: We should find an invariant set for the system so that all solutions remain

sensible. As seen before

0≤ u≤ 1, 0≤ v≤ 1, 0≤ w≤ 1.

The constant population size is constructed by the system (2.11), by adding the

equations
du
dτ

+
dv
dτ

+
dw
dτ

= 0 =⇒ u(τ)+ v(τ)+w(τ) = 1

We can now clearly show the two-dimensional simplex as

Ω = {(u,v,w) | 0≤ u,v,w≤ 1,u+ v+w = 1}.

Step 3: We should calculate the equilibrium points.

Since
βN

(γ +µ)
uv− γ

(γ +µ)
v = 0

we get

v∗ = 0 or u∗ =
γ

βN
.
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• If we substitute v∗ = 0 in the third equation of the system (2.11) then we obtain

w∗ = 0.

Namely, we find

E0 = (u∗,0,0).

Since

u+ v+w = 1,

we see that the first equilibrium point is

E0 = (1,0,0).

And it’s called the disease-free equilibrium.

• If we substitute u∗ = γ

βN in the first equation of the system (2.11) then we find

v∗ =
µ

γ
w∗.

So, we get

E1 =

(
γ

βN
,

µ

γ
w∗,w∗

)
.

Due to the fact we have proved above which is u+ v+w = 1, then the second

equilibrium point becomes

E1 =

(
γ

βN
,

µ

µ + γ

(
1− γ

βN

)
,

γ

µ + γ

(
1− γ

βN

))
.

It’s called the endemic equilibrium point. It can be obviously seen that the endemic

equilibrium point exists only if all the terms are positive. This implies that the

following condition must hold:

R0 =
βN
γ
≥ 1.

Step 4: Let us reduce the system to two dimensions by substituting w = 1−u− v.

du
dτ

=− βN
(γ +µ)

uv+
µ

(γ +µ)
(1−u− v)

dv
dτ

=
βN

(γ +µ)
uv− γ

(γ +µ)
v

(2.12)

Step 5: Let us construct the Jacobian matrix of the system (2.12).

J =

(
− βN

(γ+µ)v−
µ

(γ+µ) −
βN

(γ+µ)u−
µ

(γ+µ)
βN

(γ+µ)v
βN

(γ+µ)u−
γ

(γ+µ)

)
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The Jacobian matrix at E0 = (1,0,0) is calculated as seen below:

J |(1,0,0)=

(
− µ

(γ+µ) −
βN

(γ+µ) −
µ

(γ+µ)

0 βN
(γ+µ) −

γ

(γ+µ)

)

We now calculate the tr(J) and det(J) for the disease-free equilibrium.

tr(J) =
1

(γ +µ)
(βN− γ−µ), det(J) =− µ

(γ +µ)2 (βN− γ).

Thus,

• if R0 < 1, namely γ ≥ βN, then

tr(J)< 0 and det(J)> 0

and the disease-free equilibrium is stable.

• if R0 > 1, namely βN ≥ γ , then

det(J)< 0

and the disease-free equilibrium is unstable.

In a similar way, we can construct the Jacobian matrix at (u∗,v∗,w∗) as follows:

J |(u∗,v∗,w∗)=

(
µ

(γ+µ)

(
− βN

(γ+µ) +
γ

(γ+µ) −1
)
−1

µ

(γ+µ)2 (βN− γ) 0

)

The trace and determinant of the Jacobian for the endemic equilibrium point is as

follows:

tr(J) =− µ

(γ +µ)2 (βN +µ), det(J) =
µ

(γ +µ)2 (βN− γ).

• if R0 < 1, then the endemic equilibrium point does not exist.

• if R0 > 1, then

tr(J)< 0 and det(J)> 0

which shows that the endemic equilibrium is stable.
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2.5 The SEIR Model

Unlike previous models, this model has a different compartment which is the so called

exposed class represented by E(t). In other words, the SEIR model consists of four

compartments:

1. Susceptible class S(t), which refers to the people who can catch the virus and

become infectious if exposed.

2. Exposed class E(t), which shows the number of people who are exposed to the

virus or infected but not yet infectious. Namely, although the people are infected,

the symptoms of the virus are not still visible [33].

3. Infectious class I(t), which refers to the number of infective individuals who are

able to transmit the disease by contacting with susceptible individuals.

4. Recovered class R(t), which denotes the people who gain immunity from the

disease.

We can easily understand the process of this model. Ebola virus transmission process

can be given as an example for this model [32, 36]. After transmission of the

virus, susceptible individuals go into the exposed compartment before they become

infectious and then they either recover or die. Yet, we ignore new births and deaths

because of the fact that we only study on the simplest SEIR model. Moreover, we

assume here that the total size of the population is a constant and this assumption is

written by N(t) = S(t)+E(t)+ I(t)+R(t).

The basic SEIR model’s progress can be shown with the transfer diagram as seen in

Figure (2.12).

Susceptible
S(t)

Exposed
E(t)

Infective
I(t)

Recovered
R(t)

β µ γ

Figure 2.12 : Flowchart of SEIR model.
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In this transfer diagram,

• The transmission rate, β ≥ 0, shows the rate of spread which denotes the

probability of carrying disease among a group of susceptible and infectious people.

• The incubation rate, µ ≥ 0, is the rate of latent people becoming infectious.

• The recovery rate, γ ≥ 0, is the rate of recovery by infectious people.

Therefore, the dynamics of the SEIR model are defined by the following differential

equations:
dS
dt

=−βSI

dE
dt

= βSI−µE

dI
dt

= µE− γI

dR
dt

= γI

(2.13)

with initial conditions

S(0) = S0 > 0, E(0) = E0 ≥ 0, I(0) = I0, R(0) = 0. (2.14)

2.5.1 Analysis of the SEIR model

Step 1: For simplicity reasons, we non-dimensionalise the system by

x =
S
N
, y =

E
N
, z =

I
N
, w =

R
N
, τ = t(γ +µ).

Firstly, let us study on the first equation of (2.13). If we divide that equation by N and

(γ +µ), we get
d
( S

N

)
d((γ +µ)t)

=
−β

(γ +µ)

S
N

I.

We can easily see that the new form is still dimensional. For this reason, we firstly

divide and then multiply with N in the right hand side of the last equation. So, we have

d
( S

N

)
d((γ +µ)t)

=
−β

(γ +µ)

S
N

I
N

N.

Now substituting x, z and τ into the last equation yields

dx
dτ

=
−βN
(γ +µ)

xz.
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Similarly, we obtain the non-dimensionalised form of the second, third and fourth

equations of the system (2.13).

d
(E

N

)
d((γ +µ)t)

=
βN

(γ +µ)

S
N

I
N
− µ

(γ +µ)

E
N

=⇒ dy
dτ

=
βN

(γ +µ)
xz− µ

(γ +µ)
y

d
( I

N

)
d((γ +µ)t)

=
µ

(γ +µ)

E
N
− γ

(γ +µ)

I
N

=⇒ dz
dτ

=
µ

(γ +µ)
y− γ

(γ +µ)
z

d
( R

N

)
d((γ +µ)t)

=
γ

(γ +µ)

I
N

=⇒ dw
dτ

=
γ

(γ +µ)
z

We can now demonstrate the non-dimensionalised form of the (2.13) by the following

differential equations:
dx
dτ

=
−βN
(γ +µ)

xz

dy
dτ

=
βN

(γ +µ)
xz− µ

(γ +µ)
y

dz
dτ

=
µ

(γ +µ)
y− γ

(γ +µ)
z

dw
dτ

=
γ

(γ +µ)
z

(2.15)

Step 2: Let us determine the feasible region for (2.15).

From (2.15), we easily see that

d
dτ

[x(τ)+ y(τ)+ z(τ)+w(τ)] = 0.

Namely, the population size N is always constant:

x(τ)+ y(τ)+ z(τ)+w(τ) = 1

for any τ ≥ 0.

We obtain the three-dimensional simplex as

Ω = {(x,y,z,w) | 0≤ x,y,z,w≤ 1,x(τ)+ y(τ)+ z(τ)+w(τ) = 1}.

The positive invariant set shows us that any solution starting in Ω does not leave this

region. We can also write the simplex as

Ω = {(x,y,z) | 0≤ x,y,z≤ 1,x(τ)+ y(τ)+ z(τ)≤ 1}.

using the relation w = 1− x− y− z.

Step 3: Let us find the equilibrium points of the system (2.15).
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Since
dz
dτ

= 0

we get

y∗ =
γ

µ
z∗.

If we substitute y∗ = γ

µ
z∗ in the second equation of the system (2.15), we obtain

z∗ = 0 or x∗ =
γ

βN
.

• If z∗ = 0 then it is easy to see that the y∗ = 0.

Since

x+ y+ z = 1

we obtain

x∗ = 1.

Namely, the disease-free equilibrium point is

E0 = (1,0,0).

• If x∗ = γ

βN and y∗ = γ

µ
z∗ then the endemic equilibrium is

E1 = (
γ

βN
,

γ

µ
z∗,z∗).

Since x+ y+ z = 1, the endemic equilibrium becomes

E1 =

(
γ

βN
,

γ

γ +µ

(
1− γ

βN

)
,

µ

γ +µ

(
1− γ

βN

))
.

It is easy to see that the endemic equilibrium point exists only if all the terms are

positive. This implies that the following condition must hold:

R0 =
βN
γ
≥ 1.

Step 4: Let us reduce the system to three dimensions by substituting w = 1−x−y− z.

dx
dτ

=
−βN
(γ +µ)

xz

dy
dτ

=
βN

(γ +µ)
xz− µ

(γ +µ)
y

dz
dτ

=
µ

(γ +µ)
y− γ

(γ +µ)
z

(2.16)

Step 5: Let us construct the Jacobian matrix of the system (2.16).
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J =


−βN
(γ+µ)z 0 −βN

(γ+µ)x
βN

(γ+µ)z
−µ

(γ+µ)
βN

(γ+µ)x
0 µ

(γ+µ)
−γ

(γ+µ)


The Jacobian matrix at the E0 is calculated as seen below:

J |E0=

0 0 −R0γ

(γ+µ)

0 −µ

(γ+µ)
R0γ

(γ+µ)

0 µ

(γ+µ)
−γ

(γ+µ)


The characteristic polynomial is det(J |E0) = 0. Solving this polynomial, the

eigenvalues become:

λ1 = 0, λ2,3 =
−1

2(γ +µ)

(
γ +µ∓

√
γ2 +2γµ(2R0−1)+µ2

)
.

We now investigate whether the real parts of λ2,3 are negative or not. For simplicity,

let us assume:

D = γ
2 +2γµ(2R0−1)+µ

2.

• If D < 0 the eigenvalues λ2,3 are complex with

Re(λ2,3) =
−1
2

(
γ +µ

γ +µ

)
=
−1
2
≤ 0.

So, all the eigenvalues are zero or negative. Thus, the stability of the endemic

equilibrium can not be determined since at least one eigenvalue is zero.

• If D > 0, since R0 > 1, it is easy to see that

(γ +µ)<
√

D

by using √
γ2 +2γµ(2R0−1)+µ2 >

√
(γ +µ)2 =| γ +µ | .

For simplicity, we can write the λ2,3 as follows:

λ2,3 =
−1

2(γ +µ)
(γ +µ∓

√
D)

Then it is obviously seen that the λ2 and λ3 have different signs and it implies that

the endemic equilibrium is saddle.

The Jacobian matrix at the E1 is calculated as follows:
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J |E1=


(1−R0)γµ

(γ+µ)2 0 −γ

(γ+µ)
(R0−1)γµ

(γ+µ)2
−µ

(γ+µ)
γ

(γ+µ)

0 µ

(γ+µ)
−γ

(γ+µ)


In this analysis, we use a different method which is mentioned-below as

Routh-Hurtwitz stability criterion. The third-order polynomial

P(s) = s3 +a2s2 +a1s+a0

has only roots in the open left half plane if and only if

a2,a0 are positive and a2a1 > a0.

The criterion provides a way to determine if the behaviour of a physical system has

only a stable solution, without solving the system directly.

The characteristic polynomial of J |E1 matrix is constructed by det(J |E1 −λ I) = 0.

Solving this polynomial, the coefficients are determined to be as follows:

a0 =
(R0−1)γ2µ2

(γ +µ)4 , a1 =
(R0−1)γµ

(γ +µ)2 , a2 =
γ2 +(R0 +1)γµ +µ2

(γ +µ)2 , a3 = 1.

In here, it is easy to see that a2 and a0 are positive for R0 > 1. And after some algebraic

computations we see that

a2a1

a0
=

γ2 +(R0 +1)γµ +µ2

γµ
> 1 =⇒ a2a1 > a0.

Since a2 and a0 are positive and a2a1 > a0 the conditions of Routh-Hurtwitz criterion

are satisfied. Hence, the endemic equilibrium point is stable when R0 > 1.

2.6 SIR Endemics

In the simple SIR model our objective is to study on the endemic disease’s short-term

behaviour. In this section, we study on an endemic disease’s long-term behaviour

according to [5, 37, 38]. And for this reason ignoring birth and death rate is no longer

meaningful. Namely, we take into consideration the birth and death rate from now on.

And we also examine the death rate in two different models: No disease-related death

and including disease-related death.

We will insert birth and death rates into the SIR model from now on. Namely, the total

population is no longer closed, and the total population size N will only be constant
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under additional assumptions on the birth and death rates. In line with the information

given here, we can investigate the models.

2.6.1 No disease-related death

The diagrammatic representation of the disease is shown in Figure (2.13).

Susceptible
S(t)

Infective
I(t)

Recovered
R(t)

bN β γ

d d d

Figure 2.13 : SIR endemic with no-disease related death.

In this model, we assume that there is no vertical-transmission. Namely, there is

no direct transmission from parent to an embriyo, fetus or baby during pregnancy.

Therefore, all births, which are denoted by B, are assumed to enter the susceptible

compartment. We consider B = bN, because B is not per capita birth rate. We assume

that b = d in here and d is a constant which denotes the disease-unrelated death rate.

So, the population size N is constant.

The transfer diagram leads to the following system of ordinary differential equations:

dS
dt

= bN−βSI−dS

dI
dt

= βSI− γI−dI

dR
dt

= γI−dR

(2.17)

Substituting b = d into the (2.17) gives

dS
dt

= bN−βSI−bS

dI
dt

= βSI− γI−bI

dR
dt

= γI−bR

(2.18)

Let us analyze the system now:

Step 1: We non-dimensionalise the system by defining

u =
S
N
, v =

I
N
, w =

R
N
, τ = t(γ +b).
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Firstly, we examine the first equation of the system (2.18). Let us divide the equation

by N and (γ +b). We obtain

d
( S

N

)
d((γ +b)t)

=
b

(γ +b)
− β

(γ +b)
I
N

S− b
γ +b

S
N
.

It can clearly be seen that the equation still dimensional. We firstly divide and then

multiply the second term in the right hand side of the last equation by N. Then we get

d
( S

N

)
d((γ +b)t)

=
b

(γ +b)
− β

(γ +b)
I
N

S
N

N− b
γ +b

S
N
.

Substituting u,v and w into the last equation gives

du
dτ

=
b

(γ +b)
− βN

(γ +b)
uv− b

γ +b
u.

By using the same technique, we can find the non-dimensionalized form of the second

and third equations of the system (2.18).

d
( I

N

)
d((γ +b)t)

=
β

(γ +b) I
N

S
N N− γ

(γ+b)
I
N

− b
(γ +b)

I
N

=⇒ dv
dτ

= v
(

βN
(γ +b)

u−1
)

d
( R

N

)
d((γ +b)t)

=
γ

(γ +b)
I
N
− b

(γ +b)
R
N

=⇒ dw
dτ

=
γ

(γ +b)
v− b

(γ +b)
w

Thus, the non-dimensionalized form of the system (2.18) is as follows:

du
dτ

=
b

(γ +b)
(1−u)−R0uv

dv
dτ

= v(R0u−1)

dw
dτ

=
γ

(γ +b)
v− b

(γ +b)
w

(2.19)

where R0 =
βN
γ+b is the basic reproduction number.

Step 2: Here, we find a suitable boundary region for (2.19).

u(τ)+ v(τ)+w(τ)+ = 1 =⇒ du
dτ

+
dv
dτ

+
dw
dτ

= 0

Then, the positive invariant set is

Ω = {(u,v,w) | 0≤ u,v,w≤ 1,u+ v+w = 1}.

Step 3: Let us find the equilibrium points of the system.

We obtain u∗ = 1
R0

and v∗ = 0 since v(R0u−1) = 0. The system has two equilibrium

points. The first equilibrium point is the disease-free equilibrium:
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• If we substitute v∗ = 0 in the third equation of the system (2.19) we get

w∗ = 0.

Additional, since

u+ v+w = 1

we find

u∗ = 1.

Namely, the disease-free equilibrium point is

E0 = (1,0,0).

The second equilibrium point is the endemic equilibrium:

• If we substitute u∗ = 1
R0

in the first equation of the system (2.19) we obtain

v∗ =
b

(γ +b)

(
1− 1

R0

)
.

And it is easy to calculate

w∗ =
γ

βN
(R0−1)

from the third equation of the system (2.19). Then the endemic equilibrium point

is

Ee =

(
1

R0
,

b
(γ +b)

(
1− 1

R0

)
,

γ

(γ +b)

(
1− 1

R0

))
.

Clearly, the endemic equilibrium exists only if v∗ > 0 which means that, the basic

reproduction number must be greater than 1:

R0 =
βN

γ +b
> 1.

Step 4: Let us reduce the system two dimensions by substituting w = 1−u− v.

du
dτ

=
b

(γ +b)
(1−u)−R0uv

dv
dτ

= v(R0u−1)
(2.20)

Step 5: Let us find the Jacobian matrix of (2.20).

J =

(
− b

(γ+b) −R0v −R0u
R0v R0u−1

)
35



The Jacobian matrix which is evaluated at the disease-free equilibrium point (1,0,0)

is

J |(1,0,0)=

(
− b

(γ+b) −R0

0 R0−1

)
(2.21)

It is clearly seen

tr(J) = R0−1− b
(γ +b)

, det(J) = (1−R0)
b

(γ +b)
.

for the Jacobian matrix which is represented by (2.21). Thus,

• if R0 < 1, then

trace(J)< 0 and det(J)> 0

which shows that the disease-free equilibrium is stable.

• if R0 > 1, then

det(J)> 0

which shows that the disease-free equilibrium point is a saddle.

The Jacobian matrix evaluated at the endemic equilibrium point (u∗,v∗,w∗) is

J |(u∗,v∗,w∗)=

(
− R0b

(γ+b) −1
b

(γ+b)(R0−1) 0

)
.

It is clearly seen from

tr(J) =− R0b
(γ +b)

, det(J) =
b

(γ +b)
(R0−1)

• if R0 < 1, then the endemic equilibrium point does not exists.

• if R0 > 1, then trace(J)< 0, det(J)> 0 and the endemic equilibrium point is stable.

2.6.2 Including disease-related death

Let us illustrate the dynamics of this epidemic model by the diagram as in Figure

(2.14).

Similar to the previous epidemic model, we assume that there is no

vertical-transmission. In other words, all births, which is B, are assumed to

enter the susceptible class. B is taken constant birth rate instead of constant per capita
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Infective
I(t)
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B β γ

d d

c

d

Figure 2.14 : SIR endemic including disease related death.

birth rate here. This is another way to say that the birth rate is not proportional with

the population size. We take c as a constant and c denotes the disease-related death

rate. Then the model is shown by the following ODE:

dS
dt

= B−βSI−dS

dI
dt

= βSI− γI− cI−dI

dR
dt

= γI−dR

(2.22)

Adding these three equations, we obtain

dN
dt

= B− cI−dN (2.23)

We analyze the system using any three of the equations which are shown by (2.22) and

(2.23) with N = S+ I +R. We shall choose the (N,S, I) equations. We can not reduce

the system to two equations as we have done before, since the population size is not

constant.

We now find the equilibrium points. From dI
dt = 0, we obtain

I∗ = 0 or S∗ =
(γ + c+d)

β
.

• In the first case, if we substitute I∗ = 0 in the first equation of the system (2.22) we

get

S∗ =
B
d
.

Finally, we obtain N∗ = B
d from (2.23) by using I∗ = 0. So, the first equilibrium

point

E0 = (N,S, I) =
(

B
d
,
B
d
,0
)
.

is the disease-free equilibrium.
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• In the second case, we examine the endemic equilibrium point. Substituting S∗ into

the first equation of (2.22) and the last equation which is labeled (2.23) gives us

I∗ =
B−S∗d

S∗β
and N∗ =

B
d
− c

dβS∗
(B−S∗d).

It is easy to see that the endemic equilibrium point exists only if all the terms are

positive. This implies that the following condition must hold:

B−S∗d > 0 =⇒ B > S∗d =⇒ B
S∗d

> 1

Substituting S∗ into the condition gives us the basic reproduction number as follows:

R0 =
Bβ

d(γ + c+d)
> 1.

Then the endemic equilibrium point can be written as

(N∗,S∗, I∗) =
(

1
β
[(γ +d)R0 + c],

B
dR0

,
d(R0−1)

β

)
.

Let us construct the Jacobian matrix for the (N,S, I) system which is given below:

dN
dt

= B− cI−dN

dS
dt

= B−βSI−dS

dI
dt

= βSI− γI− cI−dI

The Jacobian matrix which corresponds to the last ODE system is

J =

−d 0 −c
0 −β I−d −βS
0 β I βS− (γ + c+d)

 .

The Jacobian matrix at the disease-free equilibrium is constructed as follows:

J |E0=

−d 0 −c
0 −d 0
0 0 βB

d − (γ + c+d)


The eigenvalues of an upper triangular matrix are the entries on its main diagonal as

seen before. Then the eigenvalues are

λ1 = λ2 =−d and λ3 =
βB
d
− (γ + c+d).

Let us substitute R0 =
Bβ

d(γ+c+d) in λ3 = (γ + c+d)(R0−1). Thus,
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• if R0 < 1 then all the eigenvalues are negative and the disease-free equilibrium point

is stable.

• if R0 > 1 then λ3 > 0 and the disease-free equilibrium point is a saddle.

The Jacobian matrix at the endemic equilibrium is calculated as follows:

J |(N∗,S∗,I∗)=

−d 0 −c
0 −dR0

−βB
dR0

0 d(R0−1) 0


Then the eigenvalues are

λ1 =−d, λ2,3 =
−dR2

0
2R0

∓ 1
2R0

√
(dR2

0)
2−4Bβ (R0−1)R0.

We examine whether the real parts of λ2,3 are negative or not. Let us take

D = (dR2
0)

2−4Bβ (R0−1)R0.

• If D < 0 then the eigenvalues λ2,3 are complex with

Re(λ2,3) =
−dR2

0
2R0

< 0.

Since the real parts of all the eigenvalues are negative the endemic equilibrium is

damped oscillation.

• If D > 0, we investigate only when R0 > 1. Because we know that the endemic

equilibrium exists only if R0 > 1. Thus, if D > 0 then since R0 > 1, we get

√
D < dR2

0.

If we rewrite λ2,3 as

λ2,3 =
−1
2R0

(dR2
0∓
√

D)

we can easily see that both λ2 and λ3 are negative. Thus, the endemic equilibrium is

stable since all the eigenvalues are negative.
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2.7 Eradication and Control

In today’s world, diseases are one of the major problems of the society. Urbanization

and other factors, which are making our lives easier, are causing diseases. They bring

about epidemic and cause big loss of population. Thus, the modelling of infectious

diseases is crucial in controlling and diminishing the effects of epidemics [39, 40].

The forecasting of diseases makes it possible to eradicate or at least control it. Such

control methods might aim to reduce the effect of the basic reproduction number R0.

In the simplest models which we studied before R0 =
βN
γ

, there are three convenient

strategies according to [5, p. 101]:

1. Increase γ , the rate of recovery

2. Decrease β , the rate of transmission of disease from an infected person

3. Decrease the effective value of N, which should be interpreted as decreasing the

initial susceptible population

2.7.1 Vaccination against an SIR epidemic

In this model, assume that we have a perfect vaccine against the disease, [5]. We

focus on vaccinating new borns and p denotes the fraction of vaccinated new borns.

We now study a population which is categorised into three group of individuals:

the susceptibles (S), the infectous (I), and the recovered (R), whose dynamics are

modelled under the following assumptions.

• The natural birth and death rates are included.

• Age, sex, social status, and race do not affect the probability of being infected.

• There is no disease-related death. In other words, members of the infective class

leave either by recovery or due to natural death from their compartment.

• Recovered individuals keep their immunity. Namely, the vaccine gives long-term

immunity against the infection which averts both transmission and disease.
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In addition to above all, the aim is to find the proportion of the population we have to

vaccinate in order to eradicate the disease. Putting all these assumptions together with

the corresponding notations, the model can be shown by the schematic diagram which

is given in Figure (2.15).

Susceptible
S(t)

Infective
I(t)

Recovered
R(t)

Birth,bN

no
t v

ac
cin

ate
d,(

1−
p)

vaccinated,p

β γ

b b b

Figure 2.15 : Vaccination Against an SIR Epidemic Model.

Then the model can be written mathematically by the following system:

dS
dt

= b(1− p)N−βSI−bS

dI
dt

= βSI−bI− γI

dR
dt

= bpN + γI−bR

(2.24)

where β is the transmission rate, γ is the recovery rate and b is the natural death

or birth rate (β ,γ,b > 0). And the mathematical formulation is completed with the

non-negativity requirements of the initial conditions:

S(0)≥ 0, I(0)≥ 0, R(0)≥ 0.

As in [41], we do the following analysis:

Step 1: We modify the sytem (2.24) using a simple change of variables:

S = (1− p)S1, I = (1− p)I1, R = (1− p)R1 + pN.
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Substituting the above-mentioned variables into the (2.24) gives us a new set of

differential equations as follows:

(1− p)
dS1

dt
=b(1− p)N−β (1− p)2S1I1−b(1− p)S1

(1− p)
dI1

dt
=β (1− p)2S1I1− γ(1− p)I1−b(1− p)I1

(1− p)
dR1

dt
=γ(1− p)I1−b(1− p)R1−bpN +bpN

(2.25)

If we divide the system (2.25) by (1− p) then the system takes the following form:

dS1

dt
= bN−β (1− p)S1I1−bS1

dI1

dt
= β (1− p)S1I1− γI1−bI1

dR1

dt
= γI1−bR1

(2.26)

Step 2: Let us study on the invariant set.

Adding the equations (2.24) together, we obtain dN
dt = b(1−N). It shows that there is

no invariant set because the total population size is open.

Step 3: Let us find the equilibrium points.

There are two equilibrium points that exists for (2.26) as follows:

• If I∗1 = 0, the second equation in (2.26) holds. Substituting I∗1 = 0 into the first and

third equation in (2.26) gives us S∗1 = N and R∗1 = 0, respectively. Thus, we have

the equilibrium point

E0 = (S∗1, I
∗
1 ,R
∗
1) = (N,0,0).

This is the first equilibrium point which is called the disease-free equilibrium

point.

The second equilibrium point which is called the endemic equilibrium point can be

found easily.

• If I∗1 = 0, then from the second equation in (2.26), we get S∗1 =
N
R0

. Substituting this

value of S∗1 into the first equation in (2.26) gives

I∗1 = b
(

N
γ +b

− 1
β (1− p)

)
.

Before finding the value of R∗1 we define the basic reproduction number for

simplicity. As we have seen before, the endemic equilibrium point exists only if
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all the terms are positive which means that I∗1 must be greater than zero here. So,

we get

R0 =
Nβ (1− p)

γ +b
from

(
N

γ +b
− 1

β (1− p)

)
> 0.

Then the value of I∗1 becomes

I∗1 =
b

β (1− p)
(R0−1).

If we substitute I∗1 in the third equation of the system (2.26) then we obtain

R∗1 =
γ

β (1− p)
(R0−1).

Then the endemic equilibrium point is

Ee =

(
N
R0

,
b

β (1− p)
(R0−1),

γ

β (1− p)
(R0−1)

)
.

Step 4: Let us determine the Jacobian matrix of the system (2.26).

J =

−β (1− p)I1−b −β (1− p)S1 0
β (1− p)I1 β (1− p)S1− γ−b 0

0 γ −b


The Jacobian matrix which is evaluated at the disease-free equilibrium point is

J |E0=

−b −β (1− p)N 0
0 β (1− p)N1− γ−b 0
0 γ −b

 .

If we compute the eigenvalues of this matrix we find

λ1 =−b, λ2 =−b, and λ3 = βN(1− p)− (γ +b).

We can easily see that λ1 and λ2 are negative. So, we investigate the sign of λ3. Thus,

• if λ3 > 0 which means that the basic reproduction number R0 > 1, the disease-free

equilibrium is a saddle.

• if λ3 < 0 which means that the basic reproduction number R0 < 1, the disease-free

equilibrium is a stable node.

We now investigate the stability of the endemic equilibrium point. If we evaluate the

Jacobian matrix at the endemic equilibrium we obtain
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J |Ee=

 −bR0 −(γ +β ) 0
b(R0−1) 0 0

0 γ −b

 .

After some algebraic computations, we find the eigenvalues of this Jacobian matrix.

These eigenvalues are

λ1 =−b, λ2,3 =−
R0b

2
∓
√

b2(R0−2)2−4bγ(R0−1)
2

.

We now examine whether the real parts of λ2,3 are negative or not. Let us

D = b2(R0−2)2−4bγ(R0−1).

• If D < 0 then the eigenvalues λ2,3 are complex with

Re(λ2,3) =
−bR0

2
.

Thus, the endemic equilibrium is damped oscillation because the real parts of all

the eigenvalues are negative.

• If D > 0, we study only when R0 > 1 since the endemic equilibrium point exists

only if R0 > 1. For simplicity, we can write the value of λ2,3 as follows:

λ2,3 =
−1
2
(bR0∓

√
D).

There are two cases in here:

– If 0 < (R0b)2 < D then λ2 and λ3 have different signs. Thus, the endemic

equilibrium is saddle.

– If 0 < D < (R0b)2 then all the eigenvalues are negative. Thus, the endemic

equilibrium is stable.
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3. A DYNAMICAL SYSTEMS APPROACH TO THE INTERPLAY
BETWEEN TOBACCO SMOKERS, ELECTRONIC-CIGARETTE SMOKERS
AND SMOKING QUITTERS

3.1 Introduction

The natural behaviour of physical systems modelled by linear models is quite

predictable [1, 2]. Contrary to that, many natural phenomena such as alcohol, heroin,

drug transmission, epidemiological models, climate-vegetation, prey-predator and

smoking cessation models are governed by non-linear systems and their behaviour

is often unpredictable. For details see, [8–15].

In today’s world, smoking is one of the most critical public-health issues. As well

known, smoking damages nearly every organ of the body and causes diseases. In

addition, smoking is an addiction, this means that quitting smoking is not very easy.

Many smokers need support for quitting. In fact, there are some ways to help smokers

quit smoking. Some of them are smoking cessation programs, nicotine gums or using

electronic cigarettes for that matter. For this reason, some smokers are inclined to

use e-cigarettes instead of tobacco cigarettes as using e-cigarettes is a method to quit

smoking. According to [16], e-cigarettes are less harmful than tobacco cigarettes

because e-cigarettes involve only nicotine contrary to tobacco cigarettes which involve

more than 7000 chemicals such as arsenic(poison) and carbon monoxide (gas from

car exhaust) [42]. Indeed, there are different views on whether using e-cigarette

is beneficial or not from the medical point of view. We aim here to investigate

the addictive behaviour of tobacco smoking and the effect of e-cigarettes as an aid

in quitting smoking by taking into consideration the peer pressure and by using

mathematical modelling.

In this study, we first propose the model in line with the articles [7] and [43].

These articles examined the effect of e-cigarette on smoking cessation using different

mathematical models. In [43], Straughan concentrated on the efficiency of peer

pressure term, which is non-linear term, in the transition from smoking to e-cigarette
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smoking and studied a three compartmental model. This model consists of potential

smokers, tobacco smokers and e-cigarette smokers. In addition to these compartments,

Jung et al. considered another compartment which is the quitters’ class [7]. The

transition from smoking to e-cigarette smoking does not based on the peer pressure

term as in [7]. Considering these two articles, we offer a model which consist of four

compartments and considered the transition from smoking to e-cigarette smoking by

incorporating a peer pressure term.

3.2 The Model

Based on the traditional epidemiological models, we propose a mathematical model

to see the dynamics of the effectiveness of using e-cigarette on quitting smoking. The

dynamics of smoking is similar to the traditional epidemiological models: a potential

smoker makes contact with a smoker and starts smoking under the influence of the

smokers.

3.2.1 The model description and its parameters

In this model, we classified the total population N into four distinct classes:

1. Potential smoker class P(t), which represents the people who never smoke or

smoke in some degree but might become smokers in the future.

2. Smoker class S(t), which represents the people who smoke "everyday" or "some

days".

3. E-cigarette smoker class E(t),which represents the people who now use electronic

cigarettes.

4. Quitter class Q(t), which represents the people who quit smoking altogether.

In addition to above all, we have some assumptions in order to propose the dynamical

system. The dynamics among P(t), S(t), E(t) and Q(t) are modelled under the

following assumptions:

• P(t)+S(t)+E(t)+Q(t) = N(t); the total population size N is always constant.

• The natural rates of birth and death are included.
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• All of the natural death rates are equal to the natural birth rates.

• There is no mortality rate related to certain diseases caused by smoking.

• We take into account the effective contact rate, that is the probability of becoming a

smoker because of influential contact with smokers, which is called peer pressure.

• The effective contact rates are constants.

• We indicate the effect of the peer pressure with a non-linear term in dynamics of

smoking.

• Individuals in the quitter class may relapse after some time by making contact with

smokers.

Putting all these assumptions together with the corresponding notations, the flow

among those classes, which are mentioned-above, can be shown by the transfer

diagram as seen in Figure (3.1).

Potential
Smokers

P(t)

Smokers
S(t)

Quitters
Q(t)

E-Cigarette
Smokers

E(t)

µN

µ µ µ

µ

β1PS γ1S

β2SQ

η
SE

γ 2E

cE

Figure 3.1 : Flowchart of the proposed model.

All the non-negative parameters in the transfer diagram are defined as follows:

• µ: The natural birth and death rates of the population.

• β1: An effective contact rate that represents the probability of a potential smoker

becoming a smoker by peer pressure.
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• β2: An effective contact rate that represents the probability of a quitter relapsing to

become a smoker due to the peer influence.

• η : The transformation rate from a smoker to an e-cigarette smoker by peer pressure.

• γ1: The transformation rate from a smoker to a quitter by their own will.

• γ2: The rate of quitting smoking by using e-cigarette, per unit time.

• c: The return rate to smoker class, after using e-cigarettes, by their own will.

In line with the information given above, the proposed model can be written

mathematically by a set of four non-linear differential equations as follows:

dP
dt

= µN−µP−β1PS

dS
dt

= β1PS−µS− γ1S+β2SQ−ηSE + cE

dE
dt

= ηSE− cE−µE− γ2E

dQ
dt

= γ1S−β2SQ−µQ+ γ2E

(3.1)

Further, we have initial conditions

P(0) = P0 ≥ 0, S(0) = S0 ≥ 0, E(0) = E0 ≥ 0, Q(0) = Q0 ≥ 0.

corresponding to the proposed system.

3.2.2 Invariant region

In this section, we will construct an invariant set for the system (3.1) so that all

solutions remain sensible. Because the system (3.1) indicates the dynamics among

human population, it is logical to consider that the parameters are non-negative for all

t ≥ 0. To put it in a mathematical notation:

0≤ P≤ N, 0≤ S≤ N, 0≤ E ≤ N, and 0≤ Q≤ N.

Adding together all of the equations in system (3.1) gives us

dP
dt

+
dS
dt

+
dE
dt

+
dQ
dt

= 0.

And the last equation yields

d
dt
[P(t)+S(t)+E(t)+Q(t)] = 0.
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It can be clearly seen that dN
dt = 0 from the last equation. And this conclusion infers that

the total population is constant. Thus, we can simply construct the positively invariant

region as

Ω = {(P,S,E,Q) | 0≤ P,S,E,Q≤ N,P(t)+S(t)+E(t)+Q(t) = N}.

Before moving on to finding the equilibrium points of the system (3.1), we first obtain

the reduced form of the system (3.1). We can reduce the system (3.1) by defining

P
N

= p,
S
N

= s,
E
N

= e, and
Q
N

= q.

Substituting p,s,e and q into the system (3.1) gives us

d p
dt

= µ−µ p−β1N ps

ds
dt

= β1N ps−µs− γ1s+β2Nsq−ηNse+ ce

de
dt

= ηNse− ce−µe− γ2e

dq
dt

= γ1s−β2Nsq−µq+ γ2e

(3.2)

We can rearrange the system by defining

β1N = ξ1, β2N = ξ2, ηN = θ

which yields:
d p
dt

= µ−µ p−ξ1 ps

ds
dt

= ξ1 ps−µs− γ1s+ξ2sq−θse+ ce

de
dt

= θse− ce−µe− γ2e

dq
dt

= γ1s−ξ2sq−µq+ γ2e

(3.3)

Since the p = 1− s− e−q, we can reduce the system (3.3) as seen below:

ds
dt

= ξ1s(1− s− e−q)−µs− γ1s+ξ2sq−θse+ ce

de
dt

= θse− ce−µe− γ2e

dq
dt

= γ1s−ξ2sq−µq+ γ2e

(3.4)

We note that the individuals, who have never smoked yet, are more curious about

smoking than the individuals who quit smoking at least once. Mathematically,

ξ1 ≥ ξ2. (3.5)
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To put it in other words, the starting rate of smoking is higher than the rate of

relapse.

3.3 Existence of Steady-states

We can now observe the equilibrium points for the system (3.4). Based on the

definition of the equilibrium point, which satisfies ṡ = ė = q̇ = 0, we can indicate

the corresponding equations in the system (3.4) as follows:

ξ1s(1− s− e−q)−µs− γ1s+ξ2sq−θse+ ce = 0

θse− ce−µe− γ2e = 0

γ1s−ξ2sq−µq+ γ2e = 0

(3.6)

From the second equation of (3.6), we get e∗ = 0 or

s∗ =
c+µ + γ2

θ
. (3.7)

3.3.1 Smoking-free equilibrium point

Firstly, we will investigate e∗ = 0 case. If we substitute e∗ = 0 into the third equation

of (3.6), then we have

q∗ =
s∗γ1

µ + s∗ξ2
. (3.8)

From the first equation of (3.6), and together with (3.8), we obtain

s∗ (γ1 (µ + s∗ξ1)+(µ +(s∗−1)ξ1)(µ + s∗ξ2))

µ + s∗ξ2
= 0 (3.9)

Simplifying and factorizing (3.9) leads to

s∗
(

µ
2 +µγ1−µξ1 + s∗µξ1 + s∗γ1ξ1 + s∗µξ2− s∗ξ1ξ2 +(s∗)2

ξ1ξ2

)
= 0 (3.10)

Here, we have an explicit solution for (3.10) and that is s∗0 = 0. Now, it can be clearly

seen that q∗0 = 0 from the third equation of (3.6) by using e∗0 = 0 and s∗0 = 0. We have

shown that there is a smoking-free equilibrium which is represented by

E0 = (0,0,0).
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3.3.2 e-Cigarette smoking-free equilibrium

We know that there is another equilibrium point since we have the following quadratic

equation in (3.10):

A(s∗)2 +Bs∗+C = 0, (3.11)

where the coefficients list is

A =ξ1ξ2,

B =ξ1 (µ + γ1−ξ2)+µξ2,

C =µ (µ + γ1−ξ1) .

(3.12)

For simplicity, we divide the right hand side of B and C by (µ + γ1) and we rearrange

the system by using the following notations:

R0 =
ξ1

µ + γ1
and R1 =

ξ2

µ + γ1
.

Then the coefficients list (3.12) takes the following form:

A =ξ1ξ2,

B =ξ1 (µ + γ1)(1−R1)+µξ2,

C =µ (µ + γ1)(1−R0).

(3.13)

It is easy to determine that the roots of (3.11) as follows:

s∗1 =
−B+

√
B2−4AC

2A

s∗2 =
−B−

√
B2−4AC

2A

(3.14)

We can observe that A is always positive from (3.13). We should examine three cases

which are R0 < 1, R0 = 1 and R0 > 1.

Before continuing to examine these cases, we recall that ξ1 ≥ ξ2 from (3.5). This

assumption in our model, yields that

R0 ≥ R1.

We now examine the three cases:

• If R0 < 1 then C > 0 and B > 0. In this case, since s∗1 < 0 and s∗2 < 0 there is no

positive root. Thus, these roots are not biologically significant.
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• If R0 = 1, which satisfies C = 0, it is clear that

s∗1 = 0 and s∗2 =−
B
A

from (3.13). Since B > 0 when R1 ≤ 1 then s∗2 is negative. So, we can say that s∗2 is

not sensible.

On the other hand, if we consider

s∗1 = 0 together with e∗1 = 0

then we get

q∗1 = 0

which yields the smoking-free equilibrium E0 = (0,0,0).

• If R0 > 1, then C < 0, and there are two distinct real roots since

B2−4AC > 0.

And these roots have always opposite signs.

Now, we will analyze the sign of s∗1 and s∗2. Considering

√
B2−4AC >

√
B2 =| B | (3.15)

as C < 0. Taking (3.15) into consideration, we can easily see that

s∗1 =
−B+

√
B2−4AC

2A
>
−B+ | B |

2A
≥ 0

s∗2 =
−B−

√
B2−4AC

2A
<
−B− | B |

2A
≤ 0

(3.16)

Consequently, s∗1 > 0 and s∗2 < 0 when R0 > 1. Here, we do not need to calculate s∗2

because s∗2 is not biologically meaningful.

Additionally, we require that

0≤ −B+
√

B2−4AC
2A

≤ 1.

since

0≤ s∗1 ≤ 1.
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If we arrange this inequality as given below

−B+
√

B2−4AC ≤ 2A√
B2−4AC ≤ 2A+B

B2−4AC ≤ 4A2 +4AB+B2

−C < A+B

then we get a relation between A, B, and C as follows:

0 < A+B+C

Namely, if this relation satisfied between A, B, and C then s∗1 satisfies 0≤ s∗1 ≤ 1.

Putting all the values together in the coefficients list (3.13), we find that

A+B+C = ξ1ξ2 +ξ1µ +ξ1γ1−ξ1ξ2 +µξ2 +µ
2 +µγ1−µξ1

= ξ1γ1 +µξ2 +µ
2 +µγ1

> 0

So, the sum of the values of A, B, and C are always positive. Then s∗1 always exists when

R0 > 1. Existence of s∗1 guarantees that the positivity of q∗1 from (3.8). In addition, the

following condition must hold:

s∗1 +q∗1 ≤ 1.

Under the conditions mentioned above, we conclude that the e-cigarette smoking-free

equilibrium always exists when R0 > 1.

Lastly, after some algebraic computations we get

s∗1 =
−ξ1 (µ + γ1−ξ2)−µξ2 +

√
−4µ (µ + γ1−ξ1)ξ1ξ2 +(ξ1 (µ + γ1−ξ2)+µξ2)

2

2ξ1ξ2
.

For simplicity, we use the following notations:

µ + γ1−ξ1 = d

and

µ + γ1−ξ2 = d̃

Then we take

−4µdξ1ξ2 +
(
ξ1d̃ +µξ2

)2
= ∆.
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Therefore, s∗1 can be written as

s∗1 =
−d̃ξ1−µξ2 +

√
∆

2ξ1ξ2
. (3.17)

By substituting (3.17) in (3.8), we obtain

q∗1 =
γ1

(
d̃ξ1 +µξ2−

√
∆

)
ξ2

(
ξ1(d̃−2µ)+µξ2−

√
∆

) . (3.18)

Hence, the e-cigarette smoking-free equilibrium is represented by

E1 = (s∗1,0,q
∗
1).

3.3.3 Endemic equilibrium point

In addition to the equilibrium points, which are represented above by E0 and E1, there

is another equilibrium point, which is the last one, since we have (3.7).

If we substitute (3.7) into the third equation of (3.6) and solve it together with the first

equation of (3.6) then we have

q∗2 =
α(γ1(θ µ +αξ1)− γ2(θ µ +(α−θ)ξ1))

(θ µ +αξ1)(θ(µ + γ2)+αξ2)

and

e∗2 =−
α(θγ1(θ µ +αξ1)+(θ µ +(α−θ)ξ1)(θ µ +αξ2))

θ(θ µ +αξ1)(θ(µ + γ2)+αξ2)

where

α = c+µ + γ2.

Then the endemic equilibrium is represented by

E2 =
(

α

θ
,e∗2,q

∗
2

)
.

3.4 Local Stability of the Equilibrium Points

3.4.1 Stability of the smoking-free equilibrium

Let us note that

R0 =
ξ1

µ + γ1
.

Lemma 3.4.1 The system (3.6) always has the smoking-free equilibrium E0 =(0,0,0).

It is locally asymptotically stable if R0 < 1. The equilibrium bifurcates at R0 = 1. When

R0 > 1, the smoking-free equilibrium is a saddle.
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Proof From the system (3.4), the smoking-free equilibrium can be indicated by

E0 = (0,0,0).

The Jacobian matrix corresponding to this system is as follows:

J =

ξ1(1− s− e−q)−ξ1s−µ− γ1 +ξ2q−θe −ξ1s−θs+ c −ξ1s+ξ2s
θe θs− c−µ− γ2 0

γ1−ξ2q γ2 −ξ2s−µ


(3.19)

The Jacobian matrix at E0 is calculated as given below:

J |E0=

ξ1−µ− γ1 c 0
0 −c−µ− γ2 0
γ1 γ2 −µ

 (3.20)

We get the eigenvalues from characteristic polynomial, which is equivalent to

det(J |E0 −λ I) = 0,

yields

λ1 =−µ, λ2 =−c−µ− γ2 and λ3 =−µ− γ1 +ξ1

It can be easily seen that λ1 and λ2 are always negative since µ , c and γ2 are always

positive. If µ + γ1 > ξ1 then λ3 is negative.

In other words,

• if R0 < 1 then all eigenvalues become negative real numbers and it shows that the

smoking-free equilibrium is stable.

• if R0 = 1 then the system (3.6) has a non-hyperbolic equilibrium. Thus, there is a

bifurcation for the system (3.6).

• if R0 > 1, the smoking-free equilibrium is a saddle since λ3 becomes positive real

number as λ1 and λ2 are negative real numbers.

Next generation matrix method

The corresponding basic reproduction number of the smoking-free equilibrium can be

found in another way which is called next generation matrix method [44]. In this

method, the aim is to determine the spectral radius of the next generation matrix

mentioned in [45]. The dynamics are composed by a system of non-linear ordinary
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differential equations that represents the change with time for all sub-population

[44, 46] . To get R0, we only take into consideration the cases that apply to infected

people. For this reason, we will construct a linearized infected subsystem and

we already know that any linear system of ordinary differential equations can be

represented by a matrix [47, 48]. Let x = (s,e,q)T , and then the system (3.4) can

be broken down as follows:
dx
dt

= F (x)−V (x), (3.21)

where F (x) is the transmission part and V (x) is the transition part [45]. In other

words, F (x) denotes the new infection rates and V (x) denotes all the other rates.

Thus, we construct (3.21) by F (x) and V (x), which are given below:

F (x) =

F1(x)
F2(x)
F3(x)

=

ξ1(1− s− e−q)s+ξ2sq
0
0


V (x) =

V1(x)
V2(x)
V3(x)

=

 µs+ γ1s+θse− ce
−θse+ ce+µe+ γ2e
−γ1s+ξ2sq+µq− γ2e

 (3.22)

The related Jacobian matrices of F (x) and V (x) are easily calculated,

DF (x) =

−ξ1(−1+ e+q+2s)+qξ2 −sξ1 s(−ξ1 +ξ2)
0 0 0
0 0 0


DV (x) =

eθ +µ + γ1 −c+ sθ 0
−eθ c+µ + γ2− sθ 0

−γ1 +qξ2 −γ2 µ + sξ2

 (3.23)

Thus, the Jacobian matrices evaluated at the smoking-free equilibrium point E0 =

(0,0,0) can be shown by F (x) and V (x), respectively

F =

ξ1 0 0
0 0 0
0 0 0


V =

µ + γ1 −c 0
0 c+µ + γ2 0
−γ1 −γ2 µ

 (3.24)

To construct the next generation matrix FV−1, we firstly find the inverse of V . Then

V−1 can be easily calculated as

V−1 =


1

µ+γ1
c

(µ+γ1)(c+µ+γ2)
0

0 1
c+µ+γ2

0
γ1

µ(µ+γ1)
µγ2+γ1(c+γ2)

µ(µ+γ1)(c+µ+γ2)
1
µ

 , (3.25)
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We easily get the next generation matrix by some computations, which is

FV−1 =

 ξ1
µ+γ1

0 0
0 0 0
0 0 0

 . (3.26)

Last step is determining the spectral radius (ρ) of the next generation matrix [49].

More clearly, we calculate the maximum eigenvalue of FV−1. It can be clearly seen

that the maximum eigenvalue equals to ξ1
µ+γ1

from (3.26). Thus, we have

R0 = ρ(FV−1) =
ξ1

µ + γ1
. (3.27)

3.4.2 Stability of the e-cigarette smoking-free equilibrium

In Section (3.3.2), we defined the following parameters:

R0 =
ξ1

µ + γ1
,

λ1 = θs∗1− c−µ− γ2,

B̃ = (µ + s∗1ξ2)(γ1(µ + s∗1ξ1)+(µ + s∗1ξ2)(2µ +(2s∗1−1)ξ1 + s∗1ξ2))

C̃ = (µ + s∗1ξ2)((µ +(2s∗1−1)ξ1)(µ + s∗1ξ2)
2 + γ1(µ

2 + s∗1ξ1(2µ + s∗1ξ2))).

Lemma 3.4.2 If R0 > 1 and s∗1 +q∗1 ≤ 1 then the e-cigarette smoking free equilibrium

E1 = (s∗1,0,q
∗
1) exists. Moreover, E1 is stable if and only if λ1 < 0 together with B̃ > 0

and C̃ > 0.

Proof We do not substitute the values of s∗1 and q∗1 explicitly to simplify the notations.

For that reason, we use e∗1 = 0 and get the Jacobian matrix as

J =

ξ1(1− s∗1−q∗1)−ξ1s∗1−µ− γ1 +ξ2q∗1 −ξ1s∗1−θs∗1 + c −ξ1s∗1 +ξ2s∗1
0 θs∗1− c−µ− γ2 0

γ1−ξ2q∗1 γ2 −ξ2s∗1−µ


(3.28)

We have constructed the characteristic polynomial using the relationship between q∗

and s∗, which is obtained in (3.8), as follows:

(−c+θs∗1−λ −µ− γ2)(Ãλ
2 + B̃λ +C̃) = 0 (3.29)

where the coefficients list is

Ã = (µ + s∗1ξ2)
2

B̃ = (µ + s∗1ξ2)(γ1(µ + s∗1ξ1)+(µ + s∗1ξ2)(2µ +(2s∗1−1)ξ1 + s∗1ξ2))

C̃ = (µ + s∗1ξ2)((µ +(2s∗1−1)ξ1)(µ + s∗1ξ2)
2 + γ1(µ

2 + s∗1ξ1(2µ + s∗1ξ2)))

(3.30)
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It can be clearly seen that the first eigenvalue of J |E1 is found as

λ1 = (−c+θs∗1−µ− γ2).

Since we have a quadratic equation as

Ãλ
2 + B̃λ +C̃ = 0 (3.31)

in (3.29), it is easily seen that we have two other eigenvalues as stated below:

λ2 =
−B̃+

√
B̃2−4ÃC̃

2Ã

λ3 =
−B̃−

√
B̃2−4ÃC̃

2Ã

(3.32)

Further, we already know

λ2 +λ3 =−
B̃
2Ã

λ2λ3 =
C̃
Ã

(3.33)

To interpret the signs of the eigenvalues, we should examine the signs of Ã, B̃ and C̃.

We take notice that Ã is always positive since µ > 0, ξ2 > 0 and s∗1. Thus, we should

study the signs of B̃ and C̃. We have two cases here as given below:

• If C̃ < 0, it is clearly seen that

B̃2−4ÃC̃ > 0

and it yields √
B̃2−4ÃC̃ > 0. (3.34)

It shows that λ2 and λ3 are real roots. And we also obtain

λ2λ3 < 0 (3.35)

in (3.33). It can be clearly seen that λ2 and λ3 always have opposite signs. Thus, if

C̃ < 0 then the quadratic equation always has two real roots and these roots always

have opposite signs.

Consequently, the e-cigarette smoking free equilibrium is saddle, irrespective of

the sign of λ1.
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• If C̃ > 0, the information we have is inadequate to say

√
B̃2−4ÃC̃ > 0

or √
B̃2−4ÃC̃ < 0.

For this reason, we can not determine whether these eigenvalues are real or not.

However, we can analyze the signs of the real parts of the eigenvalues.

In this case, we always have

λ2λ3 > 0 (3.36)

since C̃ > 0. So, we should examine the sign of B̃ as follows:

– If B̃ < 0, we observe

λ2 +λ3 > 0. (3.37)

Putting (3.36) and (3.37) together yields

Re(λ2)> 0 and Re(λ3)> 0.

Thus, the e-cigarette smoking-free equilibrium is unstable. More specifically,

* If λ1 < 0 then the e-cigarette smoking free equilibrium is saddle.

* If λ1 > 0 then the e-cigarette smoking free equilibrium is unstable focus

or unstable node.

– If B̃ > 0, we easily observe

λ2 +λ3 < 0. (3.38)

If we consider (3.36) with (3.38), then we have

Re(λ2)< 0 and Re(λ3)< 0.

Moreover,

* If λ1 > 0, then the e-cigarette smoking free equilibrium is saddle.

* If λ1 < 0, then the e-cigarette smoking free equilibrium is stable focus

or stable node.
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3.4.3 Stability of the endemic equilibrium

Let us note that

B̂ = γ1 +µ−ξ1 +2ξ1s∗2 + e∗2(θ +ξ1).

In the next Lemma, we assume that ξ1 = ξ2 since otherwise we do not get analytical

expressions. We will construct the Jacobian matrix at E2 = (α

θ
,e∗2,q

∗
2) and then we will

assume that ξ1 = ξ2. In (3.45), we will rearrange the Jacobian matrix using ξ1 = ξ2.

Lemma 3.4.3 Suppose that ξ1 = ξ2. If

θξ1(θ µ +αξ2)

(θ µ +αξ1)(θγ1 +θ µ +αξ2)
≥ 1 and

θγ2ξ1 + γ1(θ µ +αξ1)

γ2(θ µ +αξ1)
≥ 1

with

s∗2 + e∗2 +q∗2 < 1

then the endemic equilibrium E2 = (s∗2,e
∗
2,q
∗
2) exists. Moreover, E2 is stable if and only

if B̂ > 0.

Proof We have proved that the system (3.6) has the endemic equilibrium, yet this

equilibrium is not always biologically meaningful. Before continuing to stability

analysis we firstly find some restrictions to have admissible equilibrium solutions. To

get meaningful results, e∗2 and q∗2 must respectively satisfy

−αθγ1(θ µ +αξ1)−αθ µ(θ µ +αξ2)−α
2
ξ1(θ µ +αξ2)+αθξ1(θ µ +αξ2)≥ 0

(3.39)

and

αγ1(θ µ +αξ1)−αγ2θ µ−αγ2(α−θ)ξ1 ≥ 0 (3.40)

These conditions are respectively equivalent to

θξ1(θ µ +αξ2)

(θ µ +αξ1)(θγ1 +θ µ +αξ2)
≥ 1 (3.41)

and
θγ2ξ1 + γ1(θ µ +αξ1)

γ2(θ µ +αξ1)
≥ 1 (3.42)

in (3.39) and (3.40).
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Besides, we take into account

s∗2 + e∗2 +q∗2 < 1. (3.43)

We can now study on stability analysis of the endemic equilibrium. The Jacobian

matrix at E2 = (α

θ
,e∗2,q

∗
2) is found as follows:

J =

ξ1(1− α

θ
− e∗2−q∗2)−ξ1

α

θ
−µ− γ1 +ξ2q∗2−θe∗2 −ξ1

α

θ
−α + c −ξ1

α

θ
+ξ2

α

θ

θe∗2 0 0
γ1−ξ2q∗2 γ2 −ξ2

α

θ
−µ


(3.44)

Under the assumption ξ1 = ξ2, the Jacobian matrix becomes

J =

ξ1(1− s∗2− e∗2−q∗2)−ξ1s∗2−µ− γ1 +ξ1q∗2−θe∗2 −ξ1s∗2−α + c 0
θe∗2 0 0

γ1−ξ1q∗2 γ2 −ξ1s∗2−µ


(3.45)

For simplicity, if we consider

Â = 1,

B̂ = γ1 +µ−ξ1 +2ξ1s∗2 + e∗2(θ +ξ1),

Ĉ = e∗2θ(α− c+ξ1s∗2)

(3.46)

we obtain the eigenvalues of (3.45) as listed below:

λ1 =−µ−ξ1s∗2

λ2 =
1
2

(
−B̂−

√
B̂2−4ÂĈ

)
λ3 =

1
2

(
−B̂+

√
B̂2−4ÂĈ

)
.

(3.47)

If we consider (3.47) with s∗2 > 0, ξ1 > 0 and µ > 0 we can clearly see that λ1 < 0.

To interpret the stability of the endemic equilibrium point, we firstly construct the

quadratic equation whose roots correspond to λ2 and λ3. Then we have the following

quadratic equation:

Âλ
2 + B̂λ +Ĉ = 0 (3.48)

the coefficients of which are given in (3.46). We should examine the sign of Ĉ.

We have an observation which indicates that Ĉ is always positive since the equilibrium

is always positive. We can easily see that Ĉ can not be negative in the following

equation:
α− c = (c+µ + γ2)− c

= µ + γ2.
(3.49)
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If we combine (3.49) with Ĉ = e∗2θ(α− c+ξ1s∗2), we get

Ĉ = e∗2θ(µ + γ2 +ξ1s∗2) =⇒ Ĉ > 0 (3.50)

since all the parameters are positive. So, we should examine the sign of B̂ since Ĉ is

always positive. Now, we have two cases which are given below:

• If B̂ > 0, then we have

γ1 +µ +2ξ1s∗2 + e∗2(θ +ξ1)> ξ1 =⇒ e∗2(θ +ξ1)> ξ1−2ξ1s∗2−µ− γ1

e∗2 >
ξ1(1−2s∗2)−µ− γ1

θ +ξ1
.

(3.51)

If we consider (3.48), we always achieve

λ2 +λ3 =−
B̂

2Â

λ2λ3 =
Ĉ
Â

(3.52)

Putting (3.50) and (3.52) together yields

Re(λ2)< 0 and Re(λ3)< 0 (3.53)

since

λ2 +λ3 < 0 and λ2λ3 > 0.

Thus, the endemic equilibrium is stable focus or stable node since λ1, λ2, λ3 < 0.

• If B̂ < 0, we obtain

e∗2 <
ξ1(1−2s∗2)−µ− γ1

θ +ξ1
.

In the same technique where B̂ > 0, we get

Re(λ2)> 0 and Re(λ3)> 0. (3.54)

Consequently, the endemic equilibrium is saddle since λ1 < 0 while λ2 and λ3 are

positive.

To achieve better interpretations, this analysis will be done with numerical solutions in

the next chapters.
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3.5 Global Stability

3.5.1 Global Stability of the smoking-free equilibrium point

Let us recall

R0 =
ξ1

µ + γ1
.

Lemma 3.5.1 If R0 < 1 and µγ2
γ1

< µ + αξ1
θ

+ ξ1γ2
γ1

are satisfied then the smoking-free

equilibrium is globally asymptotically stable.

Remark 2 When γ2
γ1
< 1 or µ < ξ1 is satisfied, we obtain µγ2

γ1
< µ + αξ1

θ
+ ξ1γ2

γ1
.

Proof We construct a Lyapunov function to examine the global stability of E0. We

consider the following Lyapunov function:

V (s,e,q) = s+he+ kq. (3.55)

with h,k> 0. It is easy to see that V (E0)= 0 and V (s,e,q)> 0 for all (s,e,q) 6=(0,0,0).

Then we need to find the derivative of the Lyapunov function and we will choose h and

k accordingly. Let us define h and k as

k =
µ + γ1−ξ1

γ1
and h = 1+

ξ1

θ
(3.56)

Then we find the derivative of the Lyapunov function:

V̇ =−ξ1s2− kµq+ s(ξ1−µ− γ1 + kγ1)+

e(c−hc−hµ−hγ2 + kγ2)+ sq(−ξ1 +ξ2− kξ2)+ se(−ξ1−θ +hθ)
(3.57)

E0 is locally asymptotically stable if and only if R0 < 1. This yields

ξ1 < µ + γ1 (3.58)

and this also guarantees that k > 0. However, this is not enough to obtain V̇ < 0.

We now clearly require V̇ < 0. It is easy to see that h is always positive. Using the

positiveness of h together with c−hc−hµ−hγ2 + kγ2 < 0 we get

µγ2

γ1
< µ +

αξ1

θ
+

ξ1γ2

γ1
. (3.59)

where α = c+µ + γ2. By (3.56), it is easy to see that V̇ < 0 since ξ1 ≥ ξ2. We proved

that when (3.58) and (3.59) are satisfied together then E0 is globally asymptotically

stable in line with Theorem (1.2.2).
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3.5.2 The unsuccessful search for a Lyapunov function for the global stability of

the e-cigarette smoking-free and endemic equilibrium points

To examine the stability of the e-cigarette smoking-free and endemic equilibrium

points we studied on different forms of Lyapunov function [50, 51]. For instance,

we considered the functions

V = x1(s− s∗)2 + x2(e− e∗)2 + x3(q−q∗)2 (3.60)

and

V = x1

(
s− s∗− s∗ ln

( s
s∗

))
+ x2

(
e− e∗− e∗ ln

( e
e∗

))
+

(
q−q∗−q∗ ln

(
q
q∗

))
.

(3.61)

However, we could not find conditions on x1, x2 and x3 for which the above choices of

V are Lyapunov Functions. Then we considered another Lyapunov function candidate

for e-cigarette smoking-free equilibrium which is given below:

V = x1

(
s− s∗− s∗ ln

( s
s∗

))
+ x2

(
e− e∗− e∗ ln

( e
e∗

))
+ x3

(
q−q∗−q∗ ln

(
q
q∗

))
(3.62)

Using (3.62) gives us more useful calculations to use Theorem (1.2.2). Firstly, let us

find the derivative of (3.62):

V̇ = x1ṡ
(

1− s∗

s

)
+ x2ė

(
1− e∗

e

)
+ x3q̇

(
1− q∗

q

)
= x1

[
ξ1(1− s− e−q)−µ− γ1 +ξ2q−θe+

ce
s

]
(s− s∗)

+ x2 [θs− c−µ− γ2] (e− e∗)+ x3

[
γ1

s
q
−ξ2s−µ + γ2

e
q

]
(q−q∗)

(3.63)

If we substitute
θs∗ = c+µ + γ2,

µ + γ1 = ξ1(1− s∗− e∗−q∗)+ξ2q∗−θe∗+
ce∗

s∗
,

µ = γ1
s∗

q∗
−ξ2s∗+ γ2

e∗

q∗

(3.64)

into (3.63), we obtain

V̇ = x1

[
ξ1 [(s∗− s)+(e∗− e)+(q∗−q)]+ξ2(q−q∗)−θ(e− e∗)+ c(

e
s
− e∗

s∗
)

]
(s− s∗)

+ x2θ(s− s∗)(e− e∗)+ x3

[
γ1

(
s
q
− s∗

q∗

)
−ξ2(s− s∗)+ γ2

(
e
q
− e∗

q∗

)]
(q−q∗)

=−x1ξ1(s− s∗)2 +(s− s∗)(e− e∗) [−x1ξ1− x1θ + x2θ ]+ (q−q∗)(s− s∗) [x1ξ2− x1ξ1− x3ξ2]

+ cx1

(
e
s
− e∗

s∗

)
(s− s∗)+ γ2x3

(
e
q
− e∗

q∗

)
(q−q∗)+ γ1x3

(
s
q
− s∗

q∗

)
(q−q∗).

(3.65)

64



We can not still yet show that V̇ < 0. Thus, the above V does not satisfy the condition

of the theorem (1.2.2), either. As a result, the existence of Lyapunov functions for the

model or not is still an open problem. Future research could be focused on finding

appropriate Lyapunov function(s) for the problem.

3.6 Numerical Results

In this section, we present some numerical simulations using the parameters given in

Table (3.1), which was used in [7], for the system (3.4). In line with the information

obtained from [7], we assumed that the mortality rate, µ , is estimated by the inverse

of life expectancy at birth for the total population in the United States [52]. The data

used in this study were obtained from people who smoked for 50 years according to

National Health Interview Survey(NHIS) [53]. Taking this data into consideration, we

changed our parameters to some extent in order to get more meaningful result for our

model.

Table 3.1 : Description and estimation of parameters.

Parameter Description Value
(((yyyeeeaaarrr−1)))

Reference

µ Birth and death rates 1/79.8 Estimated in
[52]

ξ1

Transmission rate from potential
smoker compartment to smoker
compartment due to peer pressure

0.1961 Estimated in
[54]

ξ2 Rate of relapse due to peer pressure 0.0101 Estimated in
[54]

γ1
Treatment rate of people who quit
smoking by their own will

0.0772 Estimated in
[54]

γ2 The cessation rate by using e-cigarette 0.1008 Estimated in
[7]

c The return rate to smoker class, after
using e-cigarettes, by their own will

0.0822 Estimated in
[7]

θ

The transformation rate from smokers
to e-cigarettes smokers due to peer
pressure

0.1245 Estimated in
[7]
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3.6.1 Numerical verification of stability of the smoking-free equilibrium

The parameters are selected in compliance with the Table (3.1). We investigate the

simulations of the smoking-free equilibrium in four cases.

In the first case, we choose

γ1 = 0.35 (3.66)

instead of the one given in Table (3.1). The corresponding R0 value is

R0 = 0.5409 < 1.

If we consider the condition which is mentioned in (3.59) and rearrange it as

R= µ +
αξ1

θ
+

ξ1γ2

γ1
− µγ2

γ1

where α = c+µ + γ2.

Then we find

R= 0.3733 > 0.

We give the simulations where R0 < 1 as R > 0 with different initial conditions in

Figures (3.2) and (3.3). The figures verify that the smoking-free equilibrium

E0 = (s∗0,e
∗
0,q
∗
0) = (0,0,0)

is globally asymptotically stable.
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Figure 3.2 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. R0 = 0.5409 and R= 0.3733.
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Figure 3.3 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and q(0) = 0.25. R0 = 0.5409 and R= 0.3733.

In the second case, we investigate the case which satisfies R0 < 1 with R < 0.

Choosing

µ = 0.14, ξ1 = 0.1, γ1 = 0.015 and θ = 1

yields

R0 = 0.6451 and R=−0.0965.

Figures (3.4) and (3.5) are given for different initial conditions which are

s(0) = 0.4, e(0) = 0.3, q(0) = 0.2

and

s(0) = 0.2, e(0) = 0.5, q(0) = 0.25

respectively.
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Figure 3.4 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values µ = 0.14, ξ1 = 0.1,

γ1 = 0.015 and θ = 1. R0 = 0.6451 and R=−0.0965.
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Figure 3.5 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and q(0) = 0.25. Parameter values Parameter values

µ = 0.14, ξ1 = 0.1, γ1 = 0.015 and θ = 1. R0 = 0.6451 and
R=−0.0965.

The figures suggest that E0 is globally asymptotically stable for R0 < 1 and R <

0. If we compare the first case with the second case, we see that the positiveness

of R is insignificant when R0 < 1. Thus, the smoking-free equilibrium is globally

asymptotically stable when R0 < 1. Consequently, we see that R> 0 is necessary for

Lemma (3.5.1) but actually it is not necessary to interpret the stability of the system

when R0 < 1.
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3.6.1.1 Bifurcation at R0 = 1

In the third case, we examine the dynamics of system (3.4) which satisfies R0 = 1.

The first observation of this case shows that R is always positive when R0 = 1. It is

easy to see this from the following notation:

R= µ +
αξ1

θ
+

γ2

γ1
(ξ1−µ). (3.67)

since

R0 = 1 =⇒ ξ1 = µ + γ1 (3.68)

Substituting (3.68) in (3.67) yields

R= µ +
αξ1

θ
+

γ2

γ1
(µ + γ1−µ)

= µ +
αξ1

θ
+ γ2.

(3.69)

It is obvious that the value of R is always positive when R0 = 1. It is also easy to

observe that R is always positive when R0 ≥ 1.

To get the illustrations of this case, we choose

µ = 0.0125 and ξ1 = 0.0897

and we get

R0 = 1 and R= 0.2541.

Then we obtain the following graphics for different initial values and these graphics

suggest that the smoking-free equilibrium E0 is globally asymptotically stable when

R0 = 1. In other words, the number of smokers, e-cigarette smokers and quitters

eventually goes down to zero when R0 = 1. However, this convergence occurs in a

very long time as seen in Figures (3.6) and (3.7).
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Figure 3.6 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values µ = 0.0125 and

ξ1 = 0.0897. R0 = 1 and R= 0.2541.
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Figure 3.7 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.2,
e(0) = 0.5 and q(0) = 0.25. Parameter values µ = 0.0125 and

ξ1 = 0.0897. R0 = 1 and R= 0.2541.

As discussed before, there is a bifurcation at R0 = 1. That is for R0 > 1 the

smoking-free equilibrium loses stability. To see the bifurcation, we take

µ = 0.0125 and ξ1 = 0.098

and we obtain

R0 = 1.0925 and R= 0.2780. (3.70)
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The corresponding figure is shown by Figure (3.8) with the initial conditions

s(0) = 0.4, e(0) = 0.3 and q(0) = 0.2. (3.71)

s(t)

e(t)

q(t)

1 5 10 50 100 500 1000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

t (time)

s
,e
,q s1

* = 0.0130

e1
* = 0

q1
* = 0.0798

Figure 3.8 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values µ = 0.0125 and ξ1 = 0.098.

R0 = 1.0925 and R= 0.2780.

We also obtain

R0 = 1.1148 and R= 0.2837 (3.72)

and

R0 = 1.2151 and R= 0.3096 (3.73)

by taking

µ = 0.0125 and ξ1 = 0.1

and

µ = 0.0125 and ξ1 = 0.109

respectively. Figures (3.9) and (3.10) are given with the same initial conditions

mentioned in (3.71).
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Figure 3.9 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values µ = 0.0125 and ξ1 = 0.1.

R0 = 1.1148 and R= 0.2837.
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Figure 3.10 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values µ = 0.0125 and

ξ1 = 0.109. R0 = 1.2151 and R= 0.3096.

The Figures (3.8), (3.9) and (3.10) show that the smoking-free equilibrium exhibits a

transition, which is called a bifurcation, when we increase the value of R0 with a very

small perturbation from the value of 1. Then the smoking-free equilibrium becomes

unstable.

In the fourth case, to see the solution behaviour of the system (3.4) we consider a case

where R0 > 1. From now on, we fix the value of the basic reproduction number as

R0 = 2.1854 > 1

by parameters given in Table (3.1). Furthermore, we assume the initial conditions as

s(0) = 0.4, e(0) = 0.3 and q(0) = 0.2
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for all the simulations in the second case. Additionally, let us recall that R is always

positive when R0 ≥ 1 from (3.67), (3.68) and (3.69).

The parameters as

ξ2 = 0.2, γ2 = 0.01 and θ = 0.0124

and we find

R= 1.6925. (3.74)

and the corresponding figure is given in Figure (3.11).
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Figure 3.11 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values ξ2 = 0.2, γ2 = 0.01 and

θ = 0.0124. R0 = 2.1854 and R= 1.6925.

We give the second figure by using all the parameters as given in Table (3.1). Then we

find

R= 0.5601 (3.75)

and we obtain the corresponding simulation as seen in Figure (3.12).

73



s(t)

e(t)

q(t)

0.5 1 5 10 50 100

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t (time)

s
,e
,q s1

* = 0.0837

e1
* = 0

q1
* = 0.4835

Figure 3.12 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. R0 = 2.1854 and R= 0.5601.

For the fifth and sixth figures in the second case we obtain

R= 0.0469 (3.76)

and

R= 0.0433 (3.77)

by choosing

γ2 = 0.0108, c = 0.008, θ = 0.7

and

γ2 = 0.0108, c = 0.0001, θ = 0.9

respectively.
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Figure 3.13 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values γ2 = 0.0108, c = 0.008

and θ = 0.7. R0 = 2.1854 and R= 0.0469.
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Figure 3.14 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.4,
e(0) = 0.3 and q(0) = 0.2. Parameter values γ2 = 0.0108, c = 0.0001

and θ = 0.9. R0 = 2.1854 and R= 0.0433.

As seen in Figures (3.11) and (3.12), the e-cigarette smoking-free equilibrium is stable

while the smoking-free equilibrium is unstable. Observing Figures (3.13) and (3.14)

shows that the smoking-free equilibrium is unstable while the endemic equilibrium is

stable. In addition to above all, putting (3.74), (3.75), (3.76) together with (3.77) shows

that if we decrease the value of R the solutions switch from e-cigarette smoking-free

equilibrium and then approach the endemic equilibrium when R0 is sufficiently larger

than unity.

3.6.2 Numerical verification of stability of the e-cigarette smoking-free

equilibrium

To show the solution behaviour of the e-cigarette smoking-free E1, we conduct some

simulations.

In the first case, we choose all the parameters as given in Table (3.1). For these values

of the parameters we obtain the following steady states:

s∗1 = 0.0837, e∗1 = 0 and q∗1 = 0.4835.

Clearly, the e-cigarette smoking-free equilibrium is meaningful, biologically. We

remark here that

R0 = 2.1854.

We also get

λ1 < 0, B̃ > 0 and C̃ > 0
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from subsection (3.4.2). We conduct two simulations for this case with different initial

conditions:
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Figure 3.15 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.6,
e(0) = 0.15 and q(0) = 0.2. R0 = 2.1854.
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Figure 3.16 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.2,
e(0) = 0.4 and q(0) = 0.3. R0 = 2.1854.

As in figures (3.15) and (3.16), the e-cigarette smoking-free equilibrium is stable.

In the second case, we change some parameters in compliance with Table (3.1). Taking

γ2 = 0.008, c = 0.0002 and θ = 0.5.

yields

R0 = 2.1854, λ1 > 0, B̃ > 0 and C̃ > 0.

We also have the steady states

s∗1 = 0.0837, e∗1 = 0 and q∗1 = 0.4835.
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Using the same initial conditions as in figures (3.15) and (3.16) respectively, we obtain

the figures which are given below for the second case.
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Figure 3.17 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.6,
e(0) = 0.15 and q(0) = 0.2. Parameter values γ2 = 0.008, c = 0.0002

and θ = 0.5. R0 = 2.1854.
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Figure 3.18 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.2,
e(0) = 0.4 and q(0) = 0.3. Parameter values γ2 = 0.008, c = 0.0002

and θ = 0.5. R0 = 2.1854.

We clearly see that the e-cigarette smoking-free equilibrium is unstable as the endemic

equilibrium

E∗2 = (0.0414,0.0648,0.2872)

is stable in Figure (3.17). Additionally, if we observe Figure (3.18), we realize that the

solution curves approach

E∗2 = (0.0206,0.0604,0.1629).
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Consequently, the e-cigarette smoking-free equilibrium is unstable if λ1 > 0 when B̂ is

positive. It is clear to see that the systems oscillates to the endemic equilibrium point.

We note that the e-cigarette smoking-free equilibrium exists when R0 > 1 as seen in

all the figures which are given in e-cigarette smoking-free equilibrium simulations.

3.6.3 Numerical verification of stability of the endemic equilibrium

We use all the parameters given in Table (3.1) and the steady states as

s∗2 = 1.5705, e∗2 =−1.0724 and q∗2 = 0.4628.

As we know, these steady states are not biologically meaningful. For this reason, we

select some parameters as given below:

γ1 = 0.05, γ2 = 0.02, c = 0.01 and θ = 0.39. (3.78)

In the first case, we have two figures for different initial values:
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Figure 3.19 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.3,
e(0) = 0.45 and q(0) = 0.15. Parameter values γ1 = 0.05, γ2 = 0.02 ,

c = 0.01 and θ = 0.39.
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Figure 3.20 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.35,
e(0) = 0.4 and q(0) = 0.2. Parameter values γ1 = 0.05, γ2 = 0.02 ,

c = 0.01 and θ = 0.39.

As seen in Figures (3.19) and (3.20), the endemic equilibrium is stable.

In the second case, to see the stability of the endemic equilibrium point, we have

ξ1 = ξ2 as chosen in (3.4.3).

We use the parameters as mentioned in (3.78) together with

ξ1 = ξ2 = 0.1961.

Then we have the steady states

s∗2 = 0.1090, e∗2 = 0.2269 and q∗2 = 0.2945.

We observe

B̂ > 0

from subsection (3.4.3).

If we use the same initial conditions for Figures (3.19) and (3.20) respectively, then we

get the Figures (3.21) and (3.22).
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Figure 3.21 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.3,
e(0) = 0.45 and q(0) = 0.15. Parameter values ξ1 = ξ2 = 0.1961.
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Figure 3.22 : Graph of s(t), e(t) and q(t) with the initial conditions s(0) = 0.35,
e(0) = 0.4 and q(0) = 0.2. Parameter values ξ1 = ξ2 = 0.1961.

We clearly see that the endemic equilibrium is stable for ξ1 = ξ2.

3.7 Conclusions

In this study, our main objective was to investigate the effect of e-cigarettes on smoking

cessation. We have constructed a differential equation model to examine the impact of

using e-cigarettes on smoking cessation by peer pressure and analyzed their dynamical

behaviours.

The model exhibits three equilibrium solutions which are the smoking-free

equilibrium, e-cigarette smoking-free equilibrium and endemic equilibrium. We

established necessary conditions for the existence of these equilibrium solutions.
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We also obtained necessary and sufficient conditions for the local stability of these

equilibria.

By the next generation matrix method, we defined the basic reproduction number for

the local stability of the smoking-free equilibrium and by constructing a Lyapunov

function we assigned the condition for the global stability of the smoking-free

equilibrium. To complete the analysis and illustrate the theoretical results achieved

in the sections before, we performed numerical simulations using Mathematica. The

numerical simulations were performed using the data obtained from people who

smoked for 50 years according to National Health Interview Survey(NHIS) [53].

Taking this data into consideration, we changed our parameters to some extent in order

to get more meaningful results for our model.

As we already know, the basic reproduction number has great importance in

epidemiological models. In this model, we have obtained the basic reproduction

number for the smoking-free equilibrium and e-cigarette smoking-free equilibrium.

In the numerical figures plotted for smoking-free equilibrium, we observed that when

R0 < 1, the smoking-free equilibrium E0 is globally asymptotically stable. We noticed

that the case where R0 < 1 is a sufficient condition to achieve the global asymptotically

stable results for the smoking-free equilibrium. In other words, the value of R is not

necessary to interpret the stability of the system when R0 < 1.

We noted that when R0 > 1, the smoking-free equilibrium E0 is unstable while the

e-cigarette equilibrium or the endemic equilibrium is stable. We have questioned the

importance of R in this situation. Our results indicate that another non-dimensional

parameter R controls whether the endemic or the e-cigarette smoking-free equilibrium

becomes stable for R0 > 1.

When R0 = 1, the smoking-free equilibrium is globally asymptotically stable. Yet,

this convergency is effective in too long time. We also considered the situation which

provides a transition when we increased the value of R0 with very small perturbation

from unity. This transition is called a bifurcation. In other words, the equilibrium point

changes its behaviour from stable to unstable with very small perturbation of R0.

The observation of the numerical simulations of the e-cigarette smoking-free

equilibrium verifies our theoretical results. We observed that the e-cigarette
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smoking-free equilibrium exists when R0 > 1. Additionally, the figures show that if

λ1 becomes positive then the system oscillates to the endemic equilibrium point as the

other stability conditions are satisfied.

Moreover, we examined the illustrations related with the endemic equilibrium and we

found that the endemic equilibrium does not exist with the data given in the table in [7].

We changed these parameters in a nominal way to get a result where the endemic

equilibrium is stable. However, we could not find any condition for the endemic

equilibrium is stable when ξ1 6= ξ2. But on the other hand, we confirmed the stability

conditions when ξ1 = ξ2. This means that, the endemic equilibrium is stable. We

obviously see the importance of e-cigarettes since the number of smokers decrease and

the number of quitters increase as the number of e-cigarette smokers increase.

In conclusion, by the established dynamical model we verified the efficacy of

e-cigarettes for different situations. In other words using e-cigarettes can properly

suppress the desire for tobacco cigarettes and may be a successful way in preventing

tobacco smoking. Yet, we should always consider the possibility of relapse for smokers

and e-cigarette smokers. Using e-cigarettes is quite effective to decrease the number

of tobacco smokers, but our analysis indicates that it does not have a remarkable effect

on the number of quitters. We conclude that e-cigarette is not a tool to quit tobacco

smoking. We therefore recommend that, the society should be made conscious about

the correct methods of quitting smoking and create awareness about the right methods

of smoking cessation.
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