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RAMAN-INDUCED SOLITONS
IN OPTICAL POTENTIALS

SUMMARY

The optical solitons refer to special kind of wave packet that propagate a long distance
without distortion due to the balance of the nonlinear and dispersive effects in the
medium. Thus, the optical solitons have become a topic of current research in the
long-distance fiber communication.

It is well known that propagation of short pulses can be described by the nonlinear
Schrödinger equation. But in the femtosecond regime the standard Nonlinear
Schrödinger equation becomes inadequate and several higher order effects such as
the third order dispersion (TOD), self-steeping and the stimulated Raman scattering
(SRS). The stimulated Raman scattering is the most important nonlinear effect that
occur in the optical fibers. In nonlinear optic, the dispersion of light can be modelled
by the Nonlinear Schrödinger equation with Raman effect. Raman effect is change
in the magnitude of wave of light that happens when a light photon is redirected by
molecules. A small light refraction is dispersed at optical energies and at the most
of the times lower than the energy of the incident photons. This inelastic process of
disperse of light is defined as the Raman Effect. In other words, Raman Scattering, can
happen when molecule’s energy changes as vibrational, rotational or electronically. If
it is elastic process of disperse of light, it is called Rayleigh scattering. In 1928, V.C.
Raman, Indian physicist, explored Raman scattering in the other words Raman Effect,
later he deserved a Nobel prize for his study in 1930.

In this thesis, we demonstrate the existence and the stability properties of
Raman-induced solitons governed by Nonlinear Schrödinger equation with the
stimulated Raman effect and the external potentials. The external potentials can
be assumed PT -periodic-symmetric, PT -symmetric and Non-PT -symmetric
potentials.

The Raman induced solitons are governed by the solutions of the NLS equation for
dimensionless envelope u(x,z) of the electromagnetic wave, including the stimulated
Raman effect. The nonlinear Schrödinger equation with the Raman effect and the
external potential can be given as

iuz +uxx + |u|2u+ tu
⇣
|u|2

⌘

x
+Vxu = 0. (1)

In given equation, u(x,z) yields to the complex-valued function, uxx yields to
diffraction, t is a complex constant which refers Raman Effect and Vx is an external
potential.
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As far as we know, the exact soliton solutions for the NLS equation including the
Raman effects and periodic external potential have not been investigated up to now. By
choosing the special forms of the external potentials possessing the PT or non-PT
symmetry, we can obtain the Raman induced solitons as analytically. The PT and
non-PT symmetric potentials can be given in the following from and analytical
solutions of NLS equations:

VPT (x) =V (x)+ iW (x) =V0sech2(x)+ i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤
,

VPT (x) =V (x)+ iW (x) =
⇥
V0cos2(x)

⇤
+ i[W0sin(2x)],

VPT (x) =V (x)+ iW (x) =
⇥
V0sech2(x)+V1sech2(x)tanh(x)

⇤

+ i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤
,

(2)

u(x,z) =

s

2+
W0

2

9
�V0sech(x)ei

⇣
z+W0

3 arctan(sinh(x))
⌘

, (3)

by assuming the solution is the following form,

u(x,z) = f (x)ei[µz+g(x)] (4)

here f (x) and g(x) are real-valued functions.

In addition, in order to obtain the numerical solutions of NLS equation with Raman
effect and with external potentials, we introduce the pseudo-spectral renormalization
method [1] which based on the fixed point iteration [2]. Numerical and analytical
solutions compared with each other and it is found that numerical solutions converge
to analytical solutions. In order to obtain convergency, some conditions are found
based on external potentials.

One dimensional NLS equation with Raman Effect without potential, it is observed
that if the real part of t of Raman Effect term is getting to zero value, soliton solutions
convergency has also increased. It is also observed that if the complex part of t of
Raman Effect term is getting to zero value, and the real part of t s equal to zero,
soliton solutions are also convergent. But as we increased the value of the real part of
t and the value of the complex part of t is equal to zero, then soliton solutions of NLS
equation have not been found.

It is obtained that the imaginary part (W0) of the external potential or the real part of t
needs to be different from zero, in order to get soliton solutions of NLS equation with
the PT -periodic symmetric potential, are consistent with the analytical solution. If
the imaginary part of the external potential (W0) and the real part of t are taken as a
zero, soliton solutions cannot be found. It is very easy to show that the existence of
Raman-induced solitons depends on the propagation constant µ and the real part of the
external potential (V0). In order to get soliton solutions, the real part of the external
potential (V0) should be greater than or equal to the propagation constant µ .
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We obtained the existence of Raman-induced soliton under PT -symmetric potential,
the real part of t value should be taken as a zero. If the real part of t value is not taken
as a zero, PT symmetry conditions cannot be satisfied and the potential will not be
PT -symmetric, but becomes Non-PT -symmetric.

The pseudospectral method has been used to analyze the nonlinear stability of obtained
Raman-induced solitons. The effect of Raman term on the stability of the solitons is
investigated.

It is seen that Raman Effect term has not much impact to the stability of solitons. If
NLS equation has a higher-order nonlinearity, then the Raman Effect term will have
much impact to stability of the soliton solutions. We observed that all Raman-induced
solitons are nonlinearly stable.
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OPTİK POTENSİYELLER ALTINDA
RAMAN ETKİLİ SOLİTONLAR

ÖZET

Optik solitonlar, ortamdaki doğrusal olmayan ve dağıtıcı etkilerin dengelenmesi
sayesinde oluşan bozulmalar olmaksızın, uzun mesafede yayılan dalga paketinin özel
bir türünü ifade eder. Bu sebeple, optik solitonlar, uzun mesafe fiber iletişimde mevcut
araştırmaların konusu olmuştur.

Kısa sinyallerin yayılımlarının doğrusal olmayan Schrödinger denklemi ile tanımlan-
abileceği iyi bilinen bir gerçektir. Ancak, nanosayinenin milyonda biri düzeyinde,
standart doğrusal olmayan Schrödinger denklemi yetersiz olur ve bazı yüksek
mertebeden üçüncü mertebeli yayılım (ÜMY), kendi kendine dik posizyona gelmesi
ve uyarlanmış Raman saçılması (URS) gibi etkileri olur. Uyarlanmış Raman saçılımı
optik fiberlerde meydana gelen doğrusal olmayan en önemli etkidir. Doğrusal olmayan
optikte, ışığın yayılması Raman etkili doğrusal olmayan Schrödinger denklemi ile
modellenebilmektedir. Moleküller tarafından ışık fotonunun yönü değiştirilirken
oluşan dalga boyundaki değişiklik, Raman etkisidir. Ufak miktarda ışığın kırılması
optik enerjide yayılır ve çoğu zaman gelen ışının enerjisinden daha az olur. Işığın
yayılmasının esnek olmayan bu süreci Raman Etkisi olarak tanımlanır. Bir diğer
deyişle Raman saçılması, molekül enerjisinin titreşimsel, dönüşsel ve elektronik olarak
değişmesi ile meydana gelebilir. Eğer ışık yayılım süreci esnek ise, buna Rayleigh
saçılması denir. 1928’de hint fizikçi, V.C. Raman, Raman saçılması, diğer adı
ile Raman etkisini keşfetmiştir, daha sonra 1930’da bu çalışmasından dolayı Nobel
ödülünü almayı hak etmiştir.

Bu tez çalışmasında, uyarılmış Raman etkili ve dış potansiyelli doğrusal olmayan
Schrödinger denkleminden türetilen Raman kaynaklı solitonların varlığını ve kararlılık
özelliklerini gösterdik. Dış potansiyeller PT -periyodik simetrik, PT -simetrisi
özelliği olan ve PT -simetrisi özelliği olmayan potansiyeller olarak kabul edilebilir.

Raman kaynaklı solitonlar, uyarılmış Raman etkisini içererek, elektromanyetik
dalganın boyutsuz sarmalı u(x,z) için doğrusal olmayan Schrödinger denkleminin
çözümleri olarak türetilir. Raman etkili ve dış potansiyelli doğrusal olmayan
Schrödinger denklemi aşağıdaki gibi verilebilir

iuz +uxx + |u|2u+ tu
⇣
|u|2

⌘

x
+Vxu = 0. (5)

Verilen denklemde, u(x,z) karmaşık değerli fonksiyonu ifade etmektedir, uxx yayılımı
ifade etmektedir, t Raman etkisini ifade eden karmaşık olan sabit bir sayıdır ve Vx dış
potansiyeli temsil etmektedir.
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Bildiğimiz kadarı ile, bu zamana kadar Raman etkisi ve periyodik potansiyel içeren
doğrusal olmayan Schrödinger denklemi için tam soliton çözümleri bulunamamıştır.
PT ve PT olmayan simetrik özelliği olan dış potansiyelinin özel bir formu
seçilerek, analitik olarak Raman kaynaklı solitonlar elde edebiliriz. PT ve
PT olmayan simetrik potansiyelleri ve doğrusal olmayan Schrödinger denkleminin
analitik çözümü aşağıdaki formda verilebilir:

VPT (x) =V (x)+ iW (x) =V0sech2(x)+ i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤
,

VPT (x) =V (x)+ iW (x) =
⇥
V0cos2(x)

⇤
+ i[W0sin(2x)],

VPT (x) =V (x)+ iW (x) =
⇥
V0sech2(x)+V1sech2(x)tanh(x)

⇤

+ i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤
,

(6)

u(x,z) =

s

2+
W0

2

9
�V0sech(x)ei

⇣
z+W0

3 arctan(sinh(x))
⌘

, (7)

aşağıdaki gibi çözüm önerisi verilerek hesaplanmıştır,

u(x,z) = f (x)ei[µz+g(x)] (8)

burada f (x) ve g(x) gerçek değerli fonksiyonlardır.

Buna ek olarak, Raman etkili ve dış potansiyelli doğrusal olmayan Schrödinger
denkleminin sayısal çözümlerini elde etmek için, sabit nokta iterasyonuna dayanan
pseudo-spektral renormalizasyon yöntemini kullandık. Sayısal çözümler kesin
çözümlerle karşılaştırılmış ve sayısal çözümlerin analitik çözümlere yakınsadığı
bulunmuştur.

Potansiyel olmayan birinci derece Raman etkili NLS denkleminin, terim içerisinde
bulunan t karmaşık sayı sabitinin gerçek kısmının değeri sıfıra yaklaştıkça,
yakınsaklığın arttığı gözlemlenmiştir. Eğer Raman etkisi terim içerisindeki t sabitinin
karmaşık kısmının değeri sıfıra yaklaştığında ve t sabitinin değeri 0’a eşit olduğunda
soliton çözümlerinin yakınsak olduğu gözlemlenmiştir. Ancak t sabitinin gerçek
kısmının büyük değerleri ve sanal kısmının sıfır değeri için soliton tipi çözümler
bulunamamıştır.

PT -periyodik simetrik potansiyelli ve Raman etkili NLS denkleminin soliton tipi
çözümlerini elde etmek için dış potansiyelin sanal kısmının (W0) veya t sabitinin
gerçek kısmının sıfırdan farklı olması gerektiği, böylece çözümlerin analitik çözümle
uyumlu olduğu elde edilmiştir. Eğer dış potansiyelin sanal kısmı (W0) ve t sabitinin
gerçek kısmı sıfır olarak alınırsa, soliton tipi çözümler bulunamamıştır. Raman
kaynaklı solitonlar yayılım sabiti µ değerine ve dış potansiyelin gerçek kısmının (V0)
değerine bağlı olduğu kolaylıkla görülmektedir. Soliton tipi çözümler elde etmek için
dış potansiyelin gerçek kısmının (V0) yayılım sabiti µ değerinden daha büyük veya eşit
olmalıdır.
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PT -simetrik potansiyel altında Raman kaynaklı solitonların varlığını elde ettik, t
sabitinin gerçek kısmı sıfır olarak alınmalıdır. Eğer t sabitinin gerçek kısmı sıfır olarak
alınmaz ise, PT simetri koşulları sağlanmaz ve potansiyel PT -simetrik olmaz,
ancak PT olmayan simetrik olur.

Elde edilen Raman kaynaklı solitonların doğrusal olmayan kararlılıkları pseudospek-
tral yöntemi ile analiz edilmiştir. Raman teriminin solitonların kararlılıklarına olan
etkisi sorgulanmıştır.

Raman etkisi teriminin solitonların kararlılıklarına çok büyük bir etkisi olmadığı
görülmüştür. Eğer NLS denklemi yüksek dereceden bir doğrusal olmayan mertebesi
var ise, Raman etkisi teriminin soliton çözümlerinin kararlılığına etkisi olacaktır.
Raman kaynaklı tüm elde edilen solitonların doğrusal olmayan ve kararlı solitonlar
olduklarını gözlemledik.
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1. INTRODUCTION

In the past decades, nonlinear knowledge have been comprehensively improved to

discover the riverting angle of nonlinear systems. Nonlinear knowledges are not new

issue of science, even though they gives considerably a new notion and outstanding

conclusions. It is easy to analyse nonlinear phenomena in quite variant systems with

the suitable experimental equipments. The all scope of nonlinear science can be

considered into some categories, such as fractals, solitons, complex systems etc.

Solitons are nonlinear waves which localized and take place in several scopes of

physics [1]. The basic comprehension of complicated nonlinear systems have been

figured out by soliton features. Nonlinear Schrödinger equation (NLS) is described

by the nonlinear dynamics of waves. In 1927, Erwin Schrödinger discovered NLS

equation [2]. Many amount of studies have been made about NLS equations with

different nonlinearities and different analytical and numerical methods have been used

to solve the problems.

In optical science, the dispersion distance z occurs of the time parameter t of quantum

mechanics. From this point of view, NLS type of equations are used in order to

pattern PT -symmetric structures. Many studies have been made about the diffusion

of electromagnetic waves in photorefractive substances. For this purpose, optical

solitons investigated on PT -symmetric lattices as a solution of two-dimensional NLS

equation with cubic and quintic terms [3].

The most of the photons are elastically dispersed when the light is dispersed from

the cyrstal or the molecule. The dispersed photons have the same frequency and the

same length of wave like the incident photons. A small light refraction is dispersed

at optical energies and at the most of the times lower than the energy of the incident

photons. This inelastic process of disperse of light is defined as the Raman Effect.

In other words, Raman Scattering, can happen when molecule’s energy changes as

vibrational, rotational or electronically. If it is elastic process of disperse of light, it

is called Rayleigh scattering [4]. In 1928, V.C. Raman, Indian physicist, explored
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Raman scattering in the other words Raman Effect, later he deserved a Nobel prize for

his study in 1930 [5].

Many researches have been proven higher-order dissipative and nonlinear impacts in

NLS equation [6]. In nonlinear optics, Raman scattering which is a term in NLS

equation as u
⇣
|u|2

⌘

x
, has a significant role among the higher-order nonlinear impacts.

Raman effects on solitons which generated by the Raman scattering term in NLS

equation, were experientially obtained in 1985 [7]. It became a phenomenon as

soliton self-frequency rotation and then investigations have been widely made about

Raman scattering and higher-order nonlinear impacts [7]. Raman scattering induces

to deceleration of the soliton forwarder frequency when the pulse spectrum occurs so

prevalent which defines a energy flow from the high-frequency components of a pulse

to the low frequency components of the identical pulse through raman amplification. It

is proven that if NLS equation has Raman effect term, then pulse-like solutions cannot

be obtained and Raman result has a delayed nature.

1.1 Purpose of Thesis

In this thesis, investigating of the existence of the Raman-induced solitons and

their nonlinear stability analysis of NLS equation with Raman effect and periodic,

PT -symmetric and Non-PT -symmetric potential is aimed.

1.2 Literature Review

Solitons are obtained as a result of solutions of nonlinear dissipative partial differential

equations which defining pyhsical systems [8]. Soliton theory has been developed

since ’soliton’ was defined by Zabusky and Krusal in 1965 in [9].

The nonlinear optics is one of the best area to investigate the optical solitons. Optical

solitons, temporal optical solitons, spatial optical solitons are derived from the balance

between nonlinearity and dispersion or diffraction. It is well-known that the perturbed

nonlinear Schrödinger equation can be used to describe the propagation of the short

optical pulses. The perturbed terms include the higher-order effects, the third-order

dispersion self-steeping and the stimulated Raman scattering. The Raman scattering

effect is the most important effect in the optical fiber communication.
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Since the refractive index of the optical solitond can be complex, it is very important

to investigate the light propagation in optics governed by the NLS equation with real

external potentials or gain and loss distributions [10]- [13].

In optics, optical mode which means soliton, indicates to any optical field which does

not evolve during dispersion by reason of a delicate equilibrium between linear and

nonlinear impacts in the medium.

Bender and Boettcher showed that necessary but not sufficient condition for

Hamiltonians to be PT symmetric is that real part of PT potentials should be even

functions of position and the imaginary part of the potentials should be odd [14]. In

optics, there have been a growing interest in PT symmetry because of PT optical

complex potentials can be seen both theorically and experimentally.

In 2008, Musslimani et al, studied the optical solitons in PT symmetric optical

potential theoretically [15]. The existence and stability of PT -symmetric optical

solitons have been widely studied.

Spectral renormalization method is a form of Fourier iteration method. This method

was asserted by Petviashvili in [16]. In [17], numerical approximations of localized

solitons in periodic potential is shown by spectral renormalization method.

Spectral renormalization method has improved to pseudospectral renormalization

method for using in various nonlinearities in [18]. Pseudospectral renormalization

method is based on inverse fourier transform for nonlocal terms in NLS. Method has

applied to (2+1) dimensional NLS with the qubic and quintic nonlinear terms.

It is explained that in [19], the PT -symmetric nonlinear lattices supported existence

of localized solitons. In [20], by using spectral renormalization method, the solutions

of saturable NLS equation with an external periodic and Penrose type potentials are

obtained. It was investigated that the existence of solutions and stability of solitons in

periodic and quasicrystal lattices.

It is investigated the existence of exact solutions for bright and dark solitons in weakly

nonlocal media and with the cubic and quintic nonlinear terms in [21]. It is shown that

when the solitons are unstable in local media, nonlocal effects can make them stable.
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In [22], it is observed bright and dark solitons for the higher-order NLS with Raman

Effect and with the cubic, quintic and septic terms. Raman effect and self-steepening

terms investigated seperately, and it is proven that Raman Effect term is more dominant

than self-steepening term.

It is reported conclusions of the analytical and numerical works for the modulational

instability of continuous wave in NLS with the pseudo stimulated Raman scattering

term in [6] and found that the modulation is able to control the multi-soliton patterns

which are found by modulation instability in stable or unstable form. Modulation

instability defines exponential of perturbations joint to continuous wave because of the

nonlinearity.

1.3 Hypothesis

The existence of Raman-induced solitons and the linear and nonlinear stability

properties are investigated. We found that all Raman-induced solitons are nonlinearly

stable.
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2. SOLITARY WAVES AND SOLITONS

The soliton means as a defition of a word that special kind of wave which spreads

unvaried for long distances. Because of the cancelation of dissipative and nonlinear

impacts in the medium. John Scott Russel observed solitons in 1834, in Edinburgh

canal where a horse was pulling a boat after it stopped, a water wave created. Scott

Russel followed that created water wave and he noticed that the wave was moving with

a constant speed and conserving its magnitude. He lost the wave after it moved couple

of miles in the turning of the canal [23]. After this observation, Scott Russel did some

experiment and he figured out following results [24]. It is called Solitary waves if the

wave holds following features. A nonlinear solitary waves called solitons with second

feature below that they conserves their structure, even after being in interaction with

other soliton [25].

• Waves are not dispersive which means they conserves their shapes and sizes

• After collision of two diferrent waves, they still conserves their shapes and sizes

• Velocity of the waves are constant even after collision

There are several examples for the traceable solitons, such as solitary waves in water,

on the surface of the sea or deep inside of the water and for atmospheric solitons as

an example Morning Glory clouds. Korteweg and de Vries who are two Physicists in

Holland, 1895 invented the KdV equation that defines the dynamics of solitary waves

in water [26]. In 1965, Zabusky and Kruskal numerically calculated the solution

of the KdV equation [9]. They obtained that calculated numerical solutions came

into collision one another and conserved their shapes and velocity after the collision.

Therefore, Zabusky and Kruskal defined the waves as solitons.

Zakharov and Shabat who are russian scientists, discovered solitons in optical fibers

in 1971 [27]. In 1973, they calculated the Nonlinear Schrödinger Equation (NLS)

by using the inverse scattering method [28]. Hasegwa and Tappert noticed that NLS
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conducts the pulse diffusing in optical fibers in 1973 [29]. Moreover, Mollenauer and

Smith experientially found the same kind of solitons in 1988. They transferred the

soliton pulses more than 2500 miles by using Raman effect in order to ensure optical

gain in the fiber [30].

In several subjects of physics, scientists comprehensively work on solitons such as

optics, plasmas, condensed matter physics, uid mechanics, particle physics and even

astrophysics. Optical transmission systems which are based on solitons, can take

advantage of over range of many thousands of miles with enormous information

conveying capacity by using optical amplifiers. Solitons come in the one of the

essential technologies in the present transmission reformation since it is noticed

that the transfer of data is faster without any decreasement. Moreover, solitons are

significant in optics because they are implemented to communication systems in order

to obtain high velocity data transmission and optical changing.

2.1 Optical Solitons

The surround of light waves for which the nonlinear Schrödinger equation (NLS)

defined some fundamental features, is called optical solitons [31]. The optical solitons

have been theorically and experimentally studied since they are helpfully applied in the

area of fiber-optic communications. Optical solitons are developed from a nonlinear

change in the refractive list of a substance caused by the light field. This change

in the refractive list of a substance because of an applied field is called optical Kerr

effect. The Kerr effect, the density subjection of the refractive list, induces to nonlinear

impacts responsible for soliton generation in an optical medium.

A bunch of a optical wave, naturally tends to disperse in a medium, either because of

chromatic diffusion or because of spatial refraction. Such a bunch of wave, in time or

in space or both, is called an optical soliton.

2.2 Spatial and Temporal Solitons

The optical solitons can be categorized as spatial or temporal depending on the

restriction of light in space or time during diffusion. If the electromagnetic field

is localized in time, then solitons are temporal, and the dispersion in a medium is
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because of chromatic diffusion. If the optical field is localized in the transverse

directions, then solitons are spatial, and the dispersion in a medium is because of

spatial refraction. The temporal solitons’ dynamics can be defined by NLS equation.

The spatial solitons’ dynamics can be defined by normalized NLS equation. Hasegawa

and Tappert are made researches about the existence of temporal solitons [29], and

Mollenauer experimented with temporal solitons [30]. Ashkin and Bjorkholm made

an experiment about optical spatial solitons in 1974 [32].

The spatial self-focusing (or self-defocusing) of optical rays and temporal self-phase

modulation (SPM) of pulses nonlinearly effect to the improvement of spatial and

temporal solitons in a nonlinear optical medium. When self-focusing of an optical

ray exactly atone the propagating because of diffraction, it results to the generation

of spatial soliton, and a temporal soliton is generated when SPM balances the effect

of dispersion-caused expanding of an optical pulse. The wave diffused without any

differences in its shape and is called as self-trapped. Chiao, Garmire and Townes

invented the spatial soliton named as self-trapping of optical ray in a nonlinear medium

in 1964 [33]. McCall and Hahn observed the temporal soliton named as self-caused

trapping of optical pulses in nonlinear medium [34].

In NLS equation, there are the lower order velocity diffraction term and nonlinear cubic

term, these terms give balance to optical solitons. Optical solitons have a inclination

to disperse either by reason of chromatic or spacial diffraction.

2.3 Bright Solitons

It is mentioned before that solitons are special form of the solutions of NLS equation.

Standard NLS equation can be written as

iut +uxx ±|u|2u = 0 , (2.1)

where if the sign of nonlinear term is (+), it is self-focusing nonlinearity, if the sign

is (�), it is self-defocusing nonlinearity. Solutions of NLS equation can be calculated

as bright soliton for the self-focusing case of NLS. It is called bright soliton that it

vanishes to background status at infinity. The common form of bright soliton of NLS

equation as follows [35]:

u(x,z) = asech[a(t � vx)]ei(vt+(a2�v2)x/2) . (2.2)
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a refers to the magnitude of soliton and v represents the speed of diffusing soliton. The

bright soliton for NLS equation can be seen in Fig.(2.1) for some values of a and v.
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Figure 2.1 : (a) Bright Soliton of NLS equation

2.4 Dark Solitons

Solutions of NLS equation can be calculated as dark soliton for the self-focusing case

of NLS. It is called dark soliton that it does not vanish to background at infinity. The

common form of dark soliton of NLS equation as follows [35]:

u(x,z) = u0[b tanh(u0b (t �au0x))ia]e�iu0
2x . (2.3)

u0 refers to continuos-wave background and a2 +b 2 = 1, here a = sinf and b = cosf

and f is single constant that 2f angle refers to the total degree of rotation across the

dark soliton. The dark soliton for NLS equation is shown in Fig.(2.2) for some values

of u0, a, b and f .
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Figure 2.2 : (a) Dark Soliton of NLS equation
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3. OPTICAL LATTICES

3.1 PT -Symmetry

All the phsical mesurements rely on a real quantity. In quantum mechanics,

measurements match up with eigenvalues of operators. Therefore, all the eigenavalues

of operators require to be real.

Take the Hamiltonian operator bH:

bH = bT + bV =
bp2

2m
+ bV (bx) (3.1)

where bT is the sum of the kinetic energy operator, bV is potential energy operator, bp is

the momentum operator, m is the mass and bx is the position operator.

Real eigenvalues of Eq.(3.1) conform with a real energy spectrum. In order to assure

a real spectrum, it was supposed that all measurements conformed with eigenvalues of

Hermitian (i.e. selfjoint) operators by looking back the result from linear algebra that

Hermitian matrices have real spectra. In fact, a Hermitian Hamiltonian provides a real

energy spectrum. Nervetheless, analyzed non-Hermitian Hamiltonians and discovered

that the most of them have completely real spectra given that they are named the

parity-time (PT ) symmetry property [14]. Moreover, they indicated in the most of

the cases a threshold value above which spectrum becomes complex.

PT -Symmetry is defined by the parity operator cP and the time operator cT whose

actions are given below:

P : bp !�bp,bx !�bx

T : bp !�bp,bx !�bx, i !�i

(P(ay +bf))(x) = ay(�x)+bf(�x)

(T (ay +bf))(x) = a⇤y⇤(x)+b⇤f⇤(x)

(3.2)

[36, 37]. A Hamiltonian is called PT -symmetric is it has the same eigenfunctions as
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the PT operator and satisfies as follows:

cP cT bH = bH cP cT . (3.3)

Firstly,

(PT H)( f (x, t)) = (PT )

✓
p2

2m
f (x, t)+V (x) f (x, t)

◆

= P

 
(�p)2

2m
f ⇤(x, t)+V ⇤(x) f ⇤(x, t)

!

=
p2

2m
f ⇤(�x, t)+V ⇤(�x) f ⇤(�x, t)

(3.4)

and secondly,

(HPT )( f (x, t)) = (HP)( f ⇤(x, t))

= H( f ⇤(�x, t))

=
p2

2m
f ⇤(�x, t)+V ⇤(x) f ⇤(�x, t).

(3.5)

The necessary but not sufficient condition Eq.(3.3) states

bH cP cT =
bp2

2m
+V (x)

cP cT bH =
bp2

2m
+V ⇤(�x)

)V (x) =V ⇤(�x). (3.6)

Let us consider the complex potential as

VPT (x) =V (x)+ iW (x) , V,W 2 Rn. (3.7)

And

VPT
⇤(�x) =V ⇤(�x)� iW ⇤(�x) =V (�x)� iW (�x), (3.8)

the real part of the potential, V (x) needs to be an even function and the complex part

of the potential, W (x) needs to be an odd function so that Eq.(4.6) satisfies [38].
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3.2 Optical Lattices with PT and Non-PT Symmetry

In this thesis, we will consider the optical lattice of the following form:

V (x) =V0sech2(x)+V1sech2(x)tanh(x)

W (x) =W0sech(x)tanh(x)+W1sech2(x)tanh(x)
(3.9)

with the real parameters V0 , V1 , W0 and W1. Here Vi (i = 0,1) and Wi (i = 0,1) refer to

the depths of the real and complex part of the optical lattice. V (x) and W (x) describe

the real-valued external lattice and gain-loss distribution respectively. According to

values of parameters, we will define even and odd functions of potential, moreover; it

will be defined PT and Non-PT Symmetric potentials.

3.2.1 PT -Symmetric Optical Lattices

In this section, the PT symmetric optical lattice (V (x)+ iW (x)) requires that the real

and imaginary parts should satisfy V (x) = V (�x) and W (�x) = �W (x). In order to

obtain the PT symmetry optical lattice for NLS equation with Raman effect, it will

be proved that it must be V1 = 0. In this case, V (x) is an even function and W (x) is an

odd function which satisfy the PT -symmetry requirements, hence PT -symmetric

potential is in the following form:

V (x) =V0sech2(x)

W (x) =W0sech(x)tanh(x)+W1sech2(x)tanh(x)
(3.10)

In Fig. (3.1), we plotted the real-valued external lattice and the gain-loss distribution

W (x).
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Figure 3.1 : (a) Real part of the PT -Symmetric Potential, (b) Imaginary part of the
PT -Symmetric Potential, Eq.(3.9) with V0 =W0 =W1 = 0.1.

3.2.2 Non-PT -Symmetric Optical Lattices

In this section, we will consider non-PT -symmetric potential.

VPT (x) =V (x)+ iW (x) =
⇥
V0sech2(x)+V1sech2(x)tanh(x)

⇤
+

i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤ (3.11)

where Vi(i = 0,1) and Wj( j = 0,1) refer to depths of the real and complex parts of the

potentials, respectively.

If we take V1 6= 0 in the (3.10), V (x) will not become an even function. Hence, the

potential will not be PT -Symmetric potential, but it will be Non-PT -Symmetric

Potential.

The PT symmetry require V (x) should be an even function. In order to show

Eq.(3.10) do not satisfy the PT symmetry requirement we plotted the real valued

of the optical lattice, V (x) and gain-loss distribution W (x). As it is seen from this Fig.

(3.2), V (x) is not an even function, but the W (x) is still an odd function.
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Figure 3.2 : (a) Real part of the Non-PT -Symmetric Potential, (b) Imaginary part
of the Non-PT -Symmetric Potential, Eq.(3.10) with

V0 =V1 =W0 =W1 = 0.1.

3.3 PT -Periodic Symmetric Lattices

In this section, we will consider the following PT -periodic symmetric potential

VPT (x) =V (x)+ iW (x) =
⇥
V0cos2(x)

⇤
+ i[W0sin(2x)] (3.12)

where V0 and W0 refer to depths of the real and complex parts of the potentials,

respectively. It is easy to see that from the Fig. (3.3), V is an even real-valued function

and W is an odd real-valued function.
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Figure 3.3 : (a) Real part of the PT -Periodic Symmetric Potential, (b) Imaginary
part of the PT -Periodic Symmetric Potential, Eq.(3.11) with

V0 =W0 = 0.1.
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4. SPECTRAL METHODS

4.1 Pseudo-Spectral Renormalization Method

Self-localized solutions of many nonlinear system can be found by using

different computational techniques such as shooting, self-consistency, relaxation

and Newton-Conjugate-Gradient method, Squared-Operator Iteration methods [39] ,

Imaginary-Time Evolution methods [40] or different variational procedure [41]. One

of the most useful method is Petviashvili’s method. This method based on a fixed-point

algorithm. In this method governing nonlinear equations are transformed into Fourier

space. Patviashvili’s method appeared to generate numerically lump solitary wave

of the KP-I equation, a converge factor is determined from the algebric equation. In

this section, we use a fixed-point pseudo-spectral renormalization method to solve the

equation,

iuz +uxx + |u|2u+ t|u|2xu+[V (x)+ iW (x)]u = 0 (4.1)

where z is the propopation direction of optical pulse, x is the transverse coordinate, i

denotes the imaginary number and u is the complex amplitude of the optical pulse, and

V (x) is the optical lattice, t is the raman effect.

We look for the self-localized solutions to Eq.(4.1) in the form:

u = q(x)eiµz (4.2)

Taking the derivatives of u and substituting Eq.(4.2) into Eq.(4.1) we get the following

equation

�µq+qxx + |q|2q+V (x)q� (tr + iti)q+ |q|2xq = 0 (4.3)

where µ is the propopation constant.

Let us define the 1D Fourier transform of q as

q̂(k) = F [q(x)] =
Z •

�•
q(x)eikxdx (4.4)
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and inverse 1D Fourier transform as follows:

q(x) = F�1[q̂(k)] =
Z •

�•
q̂(k)e�ikxdk. (4.5)

Applying Fourier and inverse Fourier transform to qxx and substitute in Eq.(4.3) then

we get the following equation:

�µq�F�1
h
|k|2q̂

i
+[V (x)+ iW (x)]q+(tr + iti)qF�1

h
F
h
ik|q|2

ii
+ |q|2q = 0

(4.6)

Let us define q such as

�µq =�µF�1[F [q]]. (4.7)

Substituting Eq.(4.7) into Eq.(4.6) then we get

�F�1
h⇣

µ + |k|2
⌘

q̂
i
+[V (x)+ iW (x)]q+(tr + iti)qF�1

h
F
h
ik|q|2

ii
+ |q|2q = 0.

(4.8)

Solving q̂ from Eq.(4.8), we obtain

q̂(k) =
F
h
(tr + iti)qF�1

h
ikF

h
|q|2

ii
+ |q|2q+[V (x)+ iW (x)]q

i

µ + |k|2
. (4.9)

In order to find the self-localized solutions of the Eq.(4.1), we use fixed-point iteration

method. However the iterations of Eq.(4.9) may grow unboundadly or it may tend to

0. In order to get convergent fixed-point iteration method, we introduce a new field

variable

q(x) = lw(x) , l 6= 0 (4.10)

l is called a converging factor to be determined in each iteration step substituting

(4.10) into the function w(x) satisfy the following equation

�F�1
h⇣

µ + |k|2
⌘

ŵ
i
+(tr + iti)wF�1

h
ik|l |2F

h
|w|2

ii
+ |l |2|w|2w+[V (x)+ iW (x)]w= 0.

(4.11)

In order to find |l |, we multiply Eq.(4.1) by w and integrate we obtain an algebric

equation for the convergence factor |l |:

|l |2 =�S1

S2
. (4.12)
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Where S1 and S2 are defined by

S1 =
Z •

�•
w
h
[V (x)+ iW (x)]w�F�1

h⇣
µ + |k|2

⌘
ŵ
ii

dx,

S2 =
Z •

�•
w
h
|w|2w+(tr + iti)wF�1

h
ikF

h
|w|2

iii
dx.

(4.13)

The fixed-point pseudo-spectral iteration scheme for w is given as follows:

ŵn+1 =
F
h
(tr + iti)wnF�1

h
ik|ln|3/2F

h
|wn|2

ii
+ |ln|3/2wn|wn|2 + |ln|1/2[V (x)+ iW (x)]wn

i

⇣
µ + |k|2

⌘

(4.14)

which subject to the additional constraint where Im(ln) = 0.

It was been found that pseudo-spectral iretative method prevents the numerical scheme

from diverging. This the self-localized solutions of Eq.(4.1) can be obtained fro

convergent iterative scheme. The initial condition for w is typically choosen to be

as a Gaussian such as

w(x,0) = e�(x�x0)
2
. (4.15)

The iteration continuous until the relative error as follows:

lerror =

����
ln+1

ln
�1

����. (4.16)
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5. STABILITY ANALYSIS

5.1 Nonlinear Stability

Nonlinearly stable soliton is proven that it preserves the shape, position and maximum

magnitude. In order to investigate nonlinear stability of solitons, calculated soliton

solutions will be computed for long distances in z. For this purpose, Runge-Kutta

method and Pseudospectral method is used for nonlinear stability.

5.1.1 Runge-Kutta Method

The Runge-Kutta method is a well-known numerical method in order to solve ODE

and PDE systems. Consider systems of ODEs as follows:

F
⇣

x,y,y0, ...,y(n�1)
⌘
= y(n�1) (5.1)

where y is the vector valued function,

y : R! Rm, (5.2)

in x and y(n) represents nth derivative of y.

In this section, in order to solve Eq.(5.1), Runge-Kutta method will be used with the

vector valued functions.

Consider following initial value problem written as

dy
dt

= f (t,y), y(t0) = y0. (5.3)

The Runge-Kutta method for given inital value problem Eq.(5.3)

yn+1 = yn +
1
6

h(k1 +2k2 +2k3 + k4),

tn+1 = tn +h,
(5.4)
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where yn+1 represents approximation of y(tn+1),

k1 = f (tn,yn)

k2 = f
✓

tn +
1
2

h,yn +
1
2

hk1

◆

k3 = f
✓

tn +
1
2

h,yn +
1
2

hk2

◆

k4 = f (tn +h,yn +hk3).

(5.5)

The next value yn+1 will be found by the value of yn and the size of interval h. [42]

In Eq.(5.5), k1 represents the slope at the first step of interval, k2 represents the slope

at the middle step of interval, k3 represents the slope at the middle step of interval, k4

represents the slope at the last step of interval, and the avareage of the slopes represents

approximately numerical solution of ODE Eq.(5.3) as follows: [42]

y =
1
6
(k1 +2k2 +2k3 + k4). (5.6)

Eq.(5.6) is called 4th order Runge-Kutta method result which refers the error in each

step on the order of h5, and the total error approximately is h4. Runge-Kutta method

formulae are applicable for scalar-valued and vector-valued functions. [42]

5.1.2 Pseudospectral Method

The pseudospectral method is one of the first spectral method found for wave

equations. In order to explain the method, let define the NLS equation as

iut +uxx +2|u|2u = 0. (5.7)

Discretize Eq.(5.7) in space,

un,t = i
⇣

un,xx +2|un|2un

⌘
, (5.8)

where un refers the solution on xn grid point. The fundamental meaning of the

pseudospectral method is that using discrete Fourier transform to obtain the spatial

derivative un,xx, and use and proper scheme such as Runge-Kutta to advance in

time. [39] For this computation, we used the fourth-order Runge-Kutta method. un,xx

obtained by discrete Fourier transform as

un,xx = F�1
h
(ik)2F (un)

i
, (5.9)
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where F refers to the discrete Fourier, F�1 refers to the inverse Fourier transforms

and k is the wave number.

In this thesis, we used pseudospectral method for stability of the wave equation. The

presicion of this calculation is spectral, and the error is smaller than Dx which is power

of spatial difference. [39]

After un,xx is found, Eq.(5.8) can be calculated by Runge-Kutta method which is a

time-stepping scheme. Stability of numerical solution calculated by pseudospectral

method by taking diferent time-step value Dt and spatial difference Dx. It is found that

the numerical solution became unstable for large time-step value. This is stated that

the pseudospectral method has a condition for stability on the time-step size Dt and

this condition is enough for the stable numerical solution. [39]

Dt
Dx2  2

p
2

p2 (5.10)

Eq.(5.10) is the necessary and sufficient condition for stability, for the pseudospectral

method on the NLS equation Eq.(5.7).

5.2 Linear Stability

Linear stability will be calculated by obtaining and analyzing the linear spectrum or

the linear evolution.

5.2.1 Linear Evolution

In order to examine the linear stability of the equation below,

iuz(x,z)+uxx(x,z)+ |u(x,z)|2u(x,z)+(tr + iti)u(x,z)
⇣
|u(x,z)|2

⌘

x

+VPT (x,z)u(x,z) = 0,
(5.11)

the soliton solution of Eq.(5.11) is perturbed as:

u(x,z) =
⇥
u(x)+ eŨ(x,z)

⇤
eiµz (5.12)
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where e << 1 and Ũ refers to governing equation of the NLS. Substitute solution form

to Eq.(5.11) as follows:

uz = iµ
⇥
u(x)+ eŨ(x,z)

⇤
eiµz +

⇥
Ũz(x,z)

⇤
eiµz

uxx =
⇥
uxx + eŨxx

⇤
eiµz

|u|2u = u ·u⇤ ·u = u2 ·u⇤ =
h
|u|2u+ e

⇣
u2Ũ⇤+2|u|2Ũ

⌘i
eiµz

⇣
|u|2

⌘

x
u = (uxu⇤+uu⇤x)u = ux|u|2 +u2u⇤x

=
h
u2u⇤x + |u|2ux + e

⇣
2uu⇤xŨ +u2Ũ⇤

x +ux
�
u⇤Ũ +uŨ⇤�+Ũx|u|2

⌘i
eiµz.

(5.13)

When we substitute to Eq. (5.11) and seperate q(e0) terms, we obtain

�µu+uxx+ |u|2u+ t|u|2ux + tu2u⇤x +VPT u = 0,

�µu+uxx + |u|2u+ t
⇣
|u|2

⌘

x
u+VPT u = 0.

(5.14)

When we seperate q(e) terms as follows:

�µŨ + iŨz +Ũxx +
⇣

u2Ũ⇤+2|u|2Ũ
⌘
+

t
⇣

u⇤uxŨ +uŨ⇤ux + |u|2Ũx +2uu⇤xŨ +u2Ũ⇤
x

⌘
+VPT u = 0.

(5.15)

Rewrite the Eq.(5.15), then obtain the Linear Evolution,

iŨz +Ũxx +Ũ
h
2|u|2 + tu⇤ux �µ +2tuu⇤x +VPT

i
+Ũx

h
|u|2

i

+Ũ⇤⇥u2 + tuux
⇤
+Ũ⇤

x
⇥
tu2⇤= 0.

(5.16)

5.2.2 Linear Spectrum

Linear spectrum is the eigenvalues of linear stability operator of soliton. Concened

eigenvalues will give an idea about the linear stability of the soliton.

Consider the following NLS equation with Raman effect:

iuz(x,z)+uxx(x,z)+ |u(x,z)|2u(x,z)+(tr + iti)u(x,z)
⇣
|u(x,z)|2

⌘

x

+VPT (x,z)u(x,z) = 0.
(5.17)

Soliton solutions of Eq.(5.17) form is u(x, t) = f (x)eiµt .

Substitute solution form to Eq.(5.17) as follows:

uz = f eiµziµ

uxx = fxxeiµz

|u|2 = u ·u⇤ = f eiµz · f ⇤e�iµz = f · f ⇤ = | f |2
⇣
|u|2

⌘

x
= 2| f || f |x,

(5.18)
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and multiplying by e�iµt results

�µ f + fxx + | f |2 f +(tr + iti) f
⇣
| f |2

⌘

x
+VPT f = 0. (5.19)

In order to obtain linear stability, perturb the soliton solution as

u(x, t) =
h

f (x)+ e
⇣

g(x)el t +h⇤(x)el ⇤t
⌘i

eiµt (5.20)

where e << 1 and e2 ⇡ 0, g and h are perturbation eigenfunctions and l is the

eigenvalue.

ut =
h
e
⇣

lgel t +l ⇤h⇤el ⇤t +gel t +h⇤el ⇤t
⌘
+ iµ f

i
eiµt

uxx =
h

fxx + e
⇣

gxxel t +h⇤xxel ⇤t
⌘i

eiµt
(5.21)

|u|2u =
h
| f |2 f + e

⇣
| f |2gel t + | f |2h⇤el ⇤t + el t

⇣
f 2h+ | f |2g

⌘
+ el ⇤t

⇣
f 2g⇤+ | f |2h⇤

⌘⌘i
eiµt

(5.22)

⇣
|u|2

⌘

x
u =

⇣
| f |2

⌘

x
f eiµt + eel t

⇣
f fxh+hx f 2 + f f ⇤x g+gx| f |2 +

⇣
|u|2

⌘

x
g
⌘

eiµt

+eel ⇤t
⇣

f fxg⇤+ f 2g⇤x + f f ⇤x h⇤+ | f |2h⇤x +
⇣
|u|2

⌘

x
h⇤
⌘

eiµt

(5.23)

Substituting Eq.(5.21), (5.22) and (5.23) into Eq.(5.17) gives

i
⇣h

e
⇣

lgel t +l ⇤h⇤el ⇤t +gel t +h⇤el ⇤t
⌘
+ iµ f

i⌘
eiµt

+
h

fxx + e
⇣

gxxel t +h⇤xxel ⇤t
⌘i

eiµt

+
h
| f |2 f + e

⇣
| f |2gel t + | f |2h⇤el ⇤t + el t

⇣
f 2h+ | f |2g

⌘
+ el ⇤t

⇣
f 2g⇤+ | f |2h⇤

⌘⌘i
eiµt

+(tr + iti)eiµt

(⇣
| f |2

⌘

x
f + eel t

⇣
f fxh+hx f 2 + f f ⇤x g+gx| f |2 +

⇣
|u|2

⌘

x
g
⌘

+ eel ⇤t
⇣

f fxg⇤+ f 2g⇤x + f f ⇤x h⇤+ | f |2h⇤x +
⇣
|u|2

⌘

x
h⇤
⌘)

+VPT

⇣
f + e

⇣
gel t +h⇤el ⇤t

⌘⌘
eiµt = 0.

(5.24)
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Classifying the terms and multiplying by e�iµt

h
�µ f + fxx + | f |2 f +(tr + iti)

⇣
| f |2

⌘

x
f +VPT f

i

+ eel t

(
�µg+ ilg+gxx + | f |2g+ f 2h+ | f |2g

+(tr + iti)
⇣

f fxh+hx f 2 + f f ⇤x g+gx| f |2 +
⇣
| f |2

⌘

x
g
⌘
+VPT g

)

+ eel ⇤t

(
�µh⇤+ il ⇤h⇤+h⇤xx + | f |2h⇤+ f 2g⇤+ | f |2h⇤

+(tr + iti)
⇣

f fxg⇤+ f 2g⇤x + f f ⇤x h⇤+ | f |2h⇤x +
⇣
| f |2

⌘

x
h⇤
⌘
+VPT h⇤

)
= 0.

(5.25)

First line of Eq.(5.25) is equal to 0, since f is a solution, it is seem from Eq.(5.19).

In order to make Eq.(5.25) equal to 0, the coefficients of the exponentials must be 0.

Therefore, first coefficient of el t ,

�µg+ ilg+gxx + | f |2g+ f 2h+ | f |2g

+(tr + iti)
⇣

f fxh+hx f 2 + f f ⇤x g+gx| f |2 +
⇣
| f |2

⌘

x
g
⌘
+VPT g = 0

(5.26)

and second coefficient of el ⇤t

�µh⇤+ il ⇤h⇤+h⇤xx + | f |2h⇤+ f 2g⇤+ | f |2h⇤

+(tr + iti)
⇣

f fxg⇤+ f 2g⇤x + f f ⇤x h⇤+ | f |2h⇤x +
⇣
| f |2

⌘

x
h⇤
⌘
+VPT h⇤ = 0.

(5.27)

Eq.(5.26) and Eq.(5.27) can be written as

gxx +
⇣
�µ + | f |2 + | f |2 +(tr + iti)

⇣
f f ⇤x +

⇣
| f |2

⌘

x

⌘
+VPT

⌘
g

+
�

f 2 + f fx(tr + iti)
�
h+(tr + iti) f 2hx +(tr + iti)| f |2gx =�ilg,

(5.28)

h⇤xx +
⇣
�µ + | f |2 + | f |2 +(tr + iti)

⇣
f f ⇤x +

⇣
| f |2

⌘

x

⌘
+VPT

⌘
h⇤

+
�

f 2 + f fx(tr + iti)
�
g⇤+(tr + iti) f 2g⇤x +(tr + iti)| f |2h⇤x =�il ⇤h⇤.

(5.29)

Taking the conjugate of Eq.(5.29) as follows:

hxx +
⇣
�µ + | f |2 + | f |2 +(tr � iti)

⇣
f ⇤ fx +

⇣
| f |2

⌘⇤
x

⌘
+V ⇤

PT

⌘
h

+
⇣�

f 2�⇤+ f ⇤ f ⇤x (tr � iti)
⌘

g+(tr � iti)
�

f 2�⇤gx +(tr � iti)| f |2hx = ilh.
(5.30)

Multiplying Eq.(5.30) by -1

�hxx �
⇣
�µ + | f |2 + | f |2 +(tr � iti)

⇣
f ⇤ fx +

⇣
| f |2

⌘⇤
x

⌘
+V ⇤

PT

⌘
h

�
⇣�

f 2�⇤+ f ⇤ f ⇤x (tr � iti)
⌘

g� (tr � iti)
�

f 2�⇤gx � (tr � iti)| f |2hx =�ilh.

(5.31)
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Writing Eq.(5.28) and Eq.(5.31) in the matrix form

i


L1 L2
�L2

⇤ �L1
⇤

� 
g
h

�
= l


g
h

�
(5.32)

where

L1 =
∂ 2

∂x2 +(tr + iti)| f |2
∂
∂x

+2| f |2 +(tr + iti)
⇣

f f ⇤x +
⇣
| f |2

⌘

x

⌘
�µ +VPT

L2 = (tr + iti) f 2 ∂
∂x

+ f 2 +(tr + iti) f fx.

(5.33)

The eigenvalues l can be numerically obtained. According to obtained eigenvalues,

linear stability can be investigated.
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6. SOLITONS OF THE NLS EQUATION WITH RAMAN EFFECT

6.1 NLS Equation with Raman Effect with a PT -Symmetric Potential

First of all, we study the analytical solution of NLS equation with Raman effect and

PT symmetric and non-PT symmetric optical lattices.

6.1.1 Analytical Solutions

In this section, we concentrate on the analytical self-localized soliton solutions of the

NLS equation for PT -Symmetric optical lattices. NLS equation with Raman effect

can be given as follows:

iuz(x,z)+uxx(x,z)+ |u(x,z)|2u(x,z)+(tr + iti)u(x,z)
⇣
|u(x,z)|2

⌘

x

+[V (x)+ iW (x)]u(x,z) = 0
(6.1)

It is clear to see that if u(x,z) = 0 in Eq.(6.1), it will be trivial solution. In order to

obtain non-zero solutions, it will be set u(x,z) 6= 0. Dividing Eq.(6.1) by u(x,z) as

follows:

i
uz

u
+

uxx

u
+ |u|2 +(tr + iti)|u|2x +[V (x)+ iW (x)] = 0. (6.2)

To get solution, the following form of solution will be used:

u(x,z) = f (x)ei[µz+g(x)] (6.3)

where f (x) and g(x) are realed valued and non-zero functions. Substituting this along

with

uz = iµ f e(µz+g) = iµu

uxx =
⇣

f 00+2i f 0g0+ i f 0g00 � f ˙(g0)2
⌘

e(µz+g)

|u|2 = f ei(µz+g) f e�i(µz+g) = f 2

⇣
|u|2

⌘

x
= 2| f || f |x

(6.4)
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into Eq.(6.1) results

�µ +

f 00

f
�
�
g0
�2

+ | f |2 +2tr| f || f |x +V
�
+ i


2 f 0g0

f
+g00+2ti| f || f |x +W

�
= 0.

(6.5)

Seperating real and imaginary parts of the equation (6.5), we get the following coupled

system of equations for f and g. In order to get the soliton solutions, following solutions

for f and g will be used

f (x) = f0sechp(x) where f0 2 R/
�

0
 

and p 2 N ,

g0(x) = g0sechq(x) where g0 2 R/
�

0
 

and q 2 N .
(6.6)

Substituting

f 0 = f0 psechp�1(x)(�sech(x)tanh(x)) = f (�ptanh(x))

f 00 = f 0(�ptanh(x))+ f
�
�psech2(x)

�
= f

⇥
p2 �

�
p2 + p

�
sech2(x)

⇤

g00 = g0qsechq�1(x)(�sech(x)tanh(x)) =�g0qsechq(x)tanh(x)

(6.7)

into Eq.(6.5) results

�µ + p2 �
�

p2 + p
�
sech2(x)�g0

2sech2q(x)+ f0
2sech2p(x)

�2ptr f0
2sech2p(x)tanh(x)+V (x)

+ i
⇥
�(2p+q)g0sechq(x)tanh(x)�2pti f0

2sech2p(x)tanh(x)+W (x)
⇤
= 0

(6.8)

Let us divide Eq.(6.8) into real and imaginary parts as follow:

Real Part of the Analytic Solution

We can rewrite the real part of Eq.(6.8) as,

�µ + p2 �
�

p2 + p
�
sech2(x)�g0

2sech2q(x)+ f0
2sech2p(x)

�2ptr f0
2sech2p(x)tanh(x)+V (x) = 0.

(6.9)

V (x) should be given in a form as,

V (x) =V0 +V1sech2(x)+V2sech2q(x)+V3sech2p(x)+V4sech2p(x)tanh(x) (6.10)

where

V0 = µ � p2 , V1 = p2 + p , V2 = g0
2 , V3 =� f0

2 , V4 = 2ptr f0
2 . (6.11)
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In order to make the real part of the potential simple, let us set µ = p2 to get rid of V0.

V (x) needs to be an even function for PT -symmetry as

V (�x) =V1sech2(�x)+V2sech2q(�x)+V3sech2p(�x)+V4sech2p(�x)tanh(�x)

=V1sech2(x)+V2sech2q(x)+V3sech2p(x)�V4sech2p(x)tanh(x) 6=V (x) .
(6.12)

To make V (x) an even function, it has to be taken as V4 = 0. Since, V4 = 2ptr f0
2 = 0,

as given f0 6= 0 and p 6= 0. Hence, in order to make the potential PT -symmetric, it

has to be taken as tr = 0. Now,

V (�x) =V1sech2(�x)+V2sech2q(�x)+V3sech2p(�x)

=V1sech2(x)+V2sech2q(x)+V3sech2p(x) =V (x) .
(6.13)

Imaginary Part of the Analytic Solution

Now, we can rewrite the imaginary part of Eq.(6.8) as,

�(2p+q)g0sechq(x)tanh(x)�2pti f0
2sech2p(x)tanh(x)+W (x) = 0. (6.14)

The imaginary part of the PT -symmetric potential is obtained in a form as,

W (x) =W0sechq(x)tanh(x)+W1sech2p(x)tanh(x) = 0 (6.15)

where

W0 = (2p+q)g0 , W1 = 2pti f0
2 . (6.16)

W (x) needs to be an odd function for PT -symmetry as

W (�x) =W0sechq(�x)tanh(�x)+W1sech2p(�x)tanh(�x)

=�W0sechq(x)tanh(x)�W1sech2p(x)tanh(x) =�W (x) .
(6.17)

As a result, the general soliton solution of Eq.(6.1) with

V (x) =
�

p2 + p
�
sech2(x)+g0

2sech2q(x)� f0
2sech2p(x)+2ptr f0

2sech2p(x)tanh(x)

W (x) = (2p+q)g0sechq(x)tanh(x)+2pti f0
2sech2p(x)tanh(x)

(6.18)

is given as

u(x,z) = f0sechp(x)ei[p2z+g0
R

sechq(x)dx] . (6.19)
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Now, we can make V (x) simple by equating sech(x) powers. The three powers 2p,2q

and 2 can be equated in only on way:

1)
�

2 = 2p = 2q
 
) p = q = 1:

V (x) =
�
2+g0

2 � f0
2�sech2(x)

W (x) = 3g0sech(x)tanh(x)+2ti f0
2sech2(x)tanh(x)

u(x,z) = f0sech(x)ei(z+g0arctan(sinh(x))) .

(6.20)

We will take the PT -symmetric potential in the case.

V (x) =V0sech2(x)

W (x) =W0sech(x)tanh(x)+W1sech2(x)tanh(x)
(6.21)

where

V0 = 2+g0
2 � f0

2

W0 = 3g0

W1 = 2ti f0
2 .

(6.22)

This results will give the potential Eq.(3.10) along with the exact solution to Eq.(6.1).

It follows from Eq.(6.21) that

f0 =

s

2+
W0

2

9
�V0

g0 =
W0

3

(6.23)

and the exact solution can be given as follow:

u(x,z) =

s

2+
W0

2

9
�V0sech(x)ei

⇣
z+W0

3 arctan(sinh(x))
⌘

. (6.24)

6.1.2 Numerical Solutions

Numerical solutions to Eq.(6.1) are investigated with the four different cases of

potentials by means of Pseudo-Spectral Renormalization Method. The propagation

constant can be taken as µ = 1 by the choice of the potential. To determine the

potentials, we get the different values of potential depths V0,V1,W0 and W1. For the

numerical results, we set different values of tr and ti.
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6.1.2.1 Numerical Solutions of the Optical Soliton without Potential

First of all, NLS equation is considered without any potential. The real and imaginary

part of the optical solitons and error analysis can be seen in Fig. 6.1 for tr = 0.1 and

ti = 0.1.
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Figure 6.1 : (a) Real part, (b) Imaginary part of optical solitons without potential for
tr = 0.1 and ti = 0.1, (c) Error of convergency.

It is seen from Fig. 6.1. the convergency cannot be achieved. When tr value will

be decreased as tr = 0.001, it is easy to notice that by comparing Fig. 6.1 and Fig.

6.2, the error started to decrease. Therefore, it is found out that while tr value is
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Figure 6.2 : (a) Real part, (b) Imaginary part of optical solitons without potential
tr = 0.001 and ti = 0.1, (c) Error of convergency.

approaching to 0 (tr = 0.0), numerical solution of optical solitons without potential

can be obtained in Fig. 6.3.
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Figure 6.3 : (a) Real part,(b) Imaginary part of optical solitons without potential
tr = 0.0 and ti = 0.1, (c) Error of convergency.

When tr = 0.0 and we decrease the value of ti as 0.001, it is observed that

optical solitons without potential is convergent. It is shown in Fig. 6.4.
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Figure 6.4 : (a) Real part,(b) Imaginary part of optical solitons without potential
tr = 0.0 and ti = 0.001, (c) Error of convergency.

If we assume both the value of tr and ti is 0, then we get the optical soliton and an

error of order 10�10 in 30 iteration, approximately in Fig. 6.5. Moreover, the order of

the pseudospectral method is linear.
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Figure 6.5 : (a) Real part,(b) Imaginary part of optical solitons without potential
tr = 0.0 and ti = 0.0, (c) Error of convergency.
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If we set tr = 0.1 and ti = 0.0, we found that soliton solutions cannot be found since,

convergency cannot be achieved in Fig. 6.6.
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Figure 6.6 : (a) Real part,(b) Imaginary part of optical solitons without potential
tr = 0.1 and ti = 0.0, (c) Error of convergency.

If we change tr = 0.2, it is shown in Fig. 6.7. that solitons are not still convergent.

−20 0 20
0

0.5

1

1.5

x

re
a
l(
u
)

(a)

−20 0 20
−2

−1

0

1

2

3

4
x 10

−15

x

im
a
g
(u

)

(b)

0 100 200 300

10
0

Number of Iterations

(c)
E

rr
o
r

Figure 6.7 : (a) Real part,(b) Imaginary part of optical solitons without potential
tr = 0.2 and ti = 0.0, (c) Error of convergency.

In conclusion, NLS equation with Raman effect without potential the error of order

changes, according to different t values. When tr value is closing to 0, and by choosing

different values of ti, soliton solutions are obtained. But when we get ti = 0 and

nonzero values of tr, we could not find any solitons.

6.1.2.2 Numerical Solutions of the Optical Soliton with PT -Periodic-Symmetric

Potential

Secondly, NLS equation is considered with PT -periodic-symmetric potential as

follows:

V (x) =V0cos2(x)+ iW0sin(2x) . (6.25)
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For this potential, there is no analytical solution for NLS equation given in Eq.(6.1).

The propagation constant is fixed to µ = 1, it is investigated different potentials by

setting tr, ti, V0 and W0 different values. The real and imaginary part of the optical

solitons and error analysis can be seen for tr = 0.1, ti = 0.1, V0 = 1 and W0 = 0.0 in

Fig. 6.8.
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Figure 6.8 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 1 and

W0 = 0.0, (c) Error of convergency.

When W0 value will be increased as W0 = 0.3, it is easy to see that by comparing Fig.

6.8 and Fig. 6.9, soliton shapes are different from each other. In Fig. 6.9, solution type

is dark solitons and soliton solution is not convergent.
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Figure 6.9 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 1 and

W0 = 0.3, (c) Error of convergency.

Moreover, as soon as tr value is approaching to 0, independently from the other values

by comparing Fig. 6.9 and Fig 6.10, tr = 0.0, numerical solution of optical solitons

with PT -periodic-symmetric potential is converging. It is shown in Fig. 6.10.
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Figure 6.10 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.0, ti = 0.1, V0 = 1 and

W0 = 0.3, (c) Error of convergency.

If we only change the depth of the real part of the external potential V0 = 2 and

the other values of tr, ti and W0 keep the same, we could not find any soliton solution

(see in Fig. 6.11.).
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Figure 6.11 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 2, W0 = 0.0

and µ = 1, (c) Error of convergency.

When we increase the propagation constant, µ as 2, the convergency can be achieved

in 30 iterations in Fig 6.12.

If we take V0 = 3 and µ = 2, we could not find soliton form of solutions in Fig. 6.13.

When we choose the values of µ = 3 and V0 = 3, it can be seen in Fig. 6.14, soliton

form of the solution exists.
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Figure 6.12 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 2, W0 = 0.0

and µ = 2, (c) Error of convergency.
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Figure 6.13 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 3, W0 = 0.0

and µ = 2, (c) Error of convergency.
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Figure 6.14 : (a) Real part, (b) Imaginary part of optical solitons with
PT -periodic-symmetric potential tr = 0.1, ti = 0.1, V0 = 3, W0 = 0.0

and µ = 3, (c) Error of convergency.

As a result of the numerical observations, we can conclude that the existence of

Raman-induced solitons depend on the propagation constant, the depth of the real part

of the potential and t parameters. In order to find the Raman-induced solitons, the
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propagation constant (µ) should be equal to or greater than the depth of the real part

of the potential (V0).

6.1.2.3 Numerical Solutions of the Optical Soliton with PT -Symmetric Potential

In this part of the thesis, we numerically demonstrate the soliton solutions of NLS

equation with Raman effect and PT -symmetric potential for different values of t

(the coefficients of Raman effect) and the depth of the real and the imaginary part of

the potential.

PT symmetry condition means that the real part of potential should be even function

of the position and the imaginary part of the potential should be odd. It is necesaary to

take tr = 0 in order to satisfy PT symmetry condition. Let us consider the following

PT -symmetric potential:

V (x) =V0sech2(x)

W (x) =W0sech(x)tanh(x)+W1sech2(x)tanh(x)
(6.26)

First, we show numerical soliton solutions of NLS equaiton with Raman effect for

tr = 0 in Fig. 6.15.
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Figure 6.15 : (a) Real part, (b) Imaginary part of optical solitons with
PT -symmetric potential tr = 0.0, ti = 0.1, V0 = 0.1 and W0 = 0.1, (c)

Error of convergency

We show the analytical soliton solution and soliton solution obtained numerically in

Fig. 6.16. As can be seen from this figure the pseudospectral renormalization method

converges to the analytical solution for the parameters tr = 0.0, ti = 0.1, V0 = 0.1 and

W0 = 0.1.
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Figure 6.16 : (a) Real part, (b) Imaginary part of optical solitons with
PT -symmetric potential tr = 0.0, ti = 0.1, V0 = 0.1 and W0 = 0.1, un

represents numerical solution and ua represents analytical solution

6.1.2.4 Numerical Solutions of the Optical Soliton with Non-PT -Symmetric

Potential

So far, we have assumed that the external potential used in this thesis, are the periodic

and PT -symmetric potential. Now we will consider the Non-PT -symmetric

potential which requires tr 6= 0 (the real part of the coefficient of the Raman effect).

Let us consider the following Non-PT -symmetric potential:

VPT (x) =V (x)+ iW (x) =
⇥
V0sech2(x)+V1sech2(x)tanh(x)

⇤
+

i
⇥
W0sech(x)tanh(x)+W1sech2(x)tanh(x)

⇤ (6.27)

It is concluded that even if potential is not PT -symmetric, soliton solution can be

found and it can be seen in Fig. 6.17. An error of order is 10�10 in 30 iterations,

approximately.
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Figure 6.17 : (a) Real part, (b) Imaginary part of optical solitons with
Non-PT -symmetric potential tr = 0.1, ti = 0.1, V0 = 1 and W0 = 0.3,

(c) Error of convergency.

38



It is shown that even if potential is Non-PT -symmetric, numerical solution is

converging to analytical solution in Fig. 6.18.
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Figure 6.18 : (a) Real part, (b) Imaginary part of optical solitons with
Non-PT -symmetric potential tr = 0.1, ti = 0.1, V0 = 1 and W0 = 0.3,
un represents numerical solution and ua represents analytical solution

6.1.3 Nonlinear Stability

In this section, we will numerically show how the Raman scattering effect nonlinear

stability properties. In order to study nonlinear stability, obtained Raman-induced

solitons are computed over a long-distance, for this purpose, pseudospectral method

and Runge-Kutte method are used to advance in z.

First, we took Raman-induced soliton without external potential (VPT (x)) obtained by

pseudo-spectral renormalization method and evolved it for z = 10. The numerical

results are shown in Fig 6.19. This figure shows that Raman-induced soliton is

nonlinearly stable as it preserves its maximum amplitude during the evolution.

Nonlinear stability of Raman-induced solitons with PT -periodic potential are given

in Fig. 6.20 and Fig. 6.21. It can be seen from these figures all solitons obtained

numerically are nonlinearly stable for the parameters (tr = 0, ti = 0.1, V0 = 1 and

W0 = 0.3) and (tr = 0, ti = 0.1, V0 = 1 and W0 = 0.3), respectively.

Nonlinear stable Raman-induced soliton is demonstrated in Fig. 6.22. It is proved that

if the potential is PT -symmetric potential, the soliton is stable.

In Fig. 6.23, we take tr 6= 0 and Non-PT -symmetric potential. We observed from the

figure that the maximum amplitude of soliton remains the same during the evolution.

It means that this soliton is nonlinearly stable.
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As a conclusion, we proved that PT -symmetry is not necessary condition for soliton

solutions to become stable.

0 5 10
0.5

1

1.5

z

|u
max

|

(b)

−20
0

20

0

5

10
0

0.5

1

1.5

x

(a)

z

|u|

Figure 6.19 : (a) Nonlinear evolution of the soliton without potential for tr = 0 and
ti = 0.1, (b) Maximum magnitude as a function of the distance z
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Figure 6.20 : (a) Nonlinear evolution of the soliton with PT -periodic potential for
tr = 0.1, ti = 0.1, V0 = 1 and W0 = 0, (b) Maximum magnitude as a

function of the distance z
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Figure 6.21 : (a) Nonlinear evolution of the soliton with PT -periodic potential for
tr = 0, ti = 0.1, V0 = 1 and W0 = 0.3, (b) Maximum magnitude as a

function of the distance z
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Figure 6.22 : (a) Nonlinear evolution of the soliton with PT -symmetric potential
for tr = 0, ti = 0.1, V0 = 0.1 and W0 = 0.1, (b) Maximum magnitude as

a function of the distance z
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Figure 6.23 : (a) Nonlinear evolution of the soliton with Non-PT -symmetric
potential for tr = 0.1, ti = 0.1, V0 = 1 and W0 = 0.3, (b) Maximum
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7. CONCLUSION

In this thesis, we have investigated the existence of the Raman-induced optical solitons

and their nonlinear stability properties governed by NLS equation with the Raman

effect and periodic, PT -symmetric and Non-PT -symmetric potentials. Firsty,

the Raman-induced solitons are found numerically by means of the pseudospectral

method for varies t values and the real and the imaginary potentials. The obtained

numerical results are compared the analytical solutions for the case PT -symmetric

and Non-PT -symmetric potentials. It is shown that numerical and analytic results

are in good agreement.

As a result of the numerical observation, we concluded that

(i) In order the get the optical solitons, the propagation constant should be equal or

greater than the depth of the real external potential.

(ii) It is shown that NLS equation with Raman effect and without potential,

convergency is investigated according to different t values. It is obtained that for the

smaller values of real part of t , numerical solutions converge to analytical solutions

for NLS equation with Raman effect without potential. When the real part of t is

approaching to zero, and letting the imaginary part of t as constant value, soliton

solutions have obtained and the convergency has been achieved.

(iii) The solution of NLS equation with Raman effect and periodic potential are

obtained for the different V0, W0 and t values. It is found that W0 or real part of t

value must be zero in order to get the convergency. If both of W0 or real part of t value

are not equal to zero, bright soliton solutions have not been found.

(iv) It is necessary but not sufficient condition for the PT -symmetry requires that the

real and imaginary parts of the external potential are even and odd functions of the

position respectively. In this thesis, in order to get the PT -symmetric potential, the

real part of the coefficient tr must be zero.

(v) The Raman-induced solitons have been also obtained for the Non-PT -symmetric
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potential.

(vi) We shown that obtained Raman-induced solitons are nonlinearly stable for all the

external potentials including periodic, PT , and Non-PT -symetric potentials.
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