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ON ESTIMATION OF PROBABILITY DENSITY FUNCTION

SUMMARY

Density estimation is one of the most fundamental problem in statistics. It can be
simply determined as the construction of an estimate of the density function from the
observed data when these observed data assumed to be a sample from an unknown
probability density function (pdf).

There are two approaches to density estimation problem: parametric and
nonparametric. Under parametric approach, shape of the density is assumed to be
unknown. Nonparametric approach relaxes this assumption since it relies solely on the
data and allows the "data speaks for itself". Nonparametric density estimation problem
arises in many fields, including economics, banking, genetics, climatology, hydrology,
etc. That is why, the literature about density estimation methods are vast. The kernel
method, orthogonal series method and delta sequence method have the major interest
among many other density estimation methods.

In the first chapter, a brief introduction about density estimation problem is given. The
purpose and scope of this dissertation are introduced. Some of the most used methods
are introduced and studies about these methods are mentioned as a literature summary.

In the second chapter, background and some basic definitions used in this thesis are
given.

In the third chapter, delta sequence method is studied. Many work related to density
estimation impose smoothness conditions on the density function f and its derivatives
although there are applications in which discontinuities in f are natural. However, the
assumptions of smoothness condition restricts the class of densities, so the weakening
of any conditions on the density is of considerable interest in application. For this
purpose, the conditions on the density functions are written by using the second
order modulus of continuity type majorants. Stronger local convergency rate of the
mean squared error (MSE) corresponding to d-variate delta sequence based density
estimator is obtained for both univariate and multivariate cases when compared with
the convergency rate of the MSE of the density estimators defined by the first order
finite differences.

In the fourth chapter, orthogonal series method is considered. Density function is
studied by means of Hermite functions and convergency rate of the mean integrated
square error (MISE) of density estimators by using delta sequences is obtained when
the support of the density function is infinite. Then, convergency rate of the MSE and
MISE of estimator are obtained for the densities having compact support. The results
of former publications about rate of convergence of estimators based on Hermite series
are improved.

In the fifth chapter, the kernel method is examined. In this method, a kernel is usually
considered as symmetric and it is widely believed that kernel is of minor importance

xix



than the smoothing bandwidth. But, when the estimated density has compact or
semi-infinite support, classical kernel estimators give rise to boundary bias problem.
To avoid boundary bias problem, a new asymmetric kernel estimator is proposed by
using beta prime distribution as kernel. Finite sample properties investigated and
comparisons are made with other asymmetric kernel estimators in terms of average
ISE via Monte Carlo simulations. In addition, adaptive Bayesian bandwidth selection
with Lindley approximation method proposed which is new for the asymmetric kernel
estimators. Then, it was shown that, the average ISE of the new estimator with this
new approach has better performance in comparison to the classical least squared
cross-validation method. Also, real data applications are performed to illustrate the
potential usefulness of the proposed estimator.

In the sixth chapter, asymmetric kernel density estimation method is studied for the
densities defined on the positive real line. Scaled inverse chi-squared density function
is used to construct a new kernel estimator. The adaptive Bayesian bandwidth selection
with Lindley approximation which is proposed in the previous chapter is used for
the numerical studies. Then, the average ISE comparisons are made using different
methods for the kernel estimators under consideration. Real data applications are made
to illustrate potential usefulness of the scaled inverse chi-squared estimator. Those
applications demonstrated that the proposed estimator is capable to reproduce the
shoulder near zero, unlike the beta prime estimator. Therefore, it can be used as an
alternative to beta prime kernel estimator for this kind of data sets.

Finally, last chapter devoted to the conclusions.
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OLASILIK YOĞUNLUK FONKSİYONU TAHMİNİ ÜZERİNE

ÖZET

Yoğunluk fonksiyonu kestirimi istatistiğin en temel problemlerinden biridir. Yoğunluk
fonksiyonu kestirimi basitçe dağılımı bilinmeyen bir veri seti için yoğunluk fonksiyonu
oluşturulması problemi olarak tanımlanabilir.

Yoğunluk fonksiyonu kestirimi için parametrik ve parametrik olmayan yaklaşımlar
mevcuttur. Parametrik yaklaşımda, yoğunluk fonksiyonunun birkaç parametreye
kadar bilindiği varsayılmaktadır. Böylece, bilinmeyen parametreler için kestiriciler
kurmak, parametrik kestirim yaklaşımı için yeterlidir. Parametrik olmayan yoğunluk
fonksiyonu kestirimi yaklaşımında bu varsayım hafifletilmiştir. Parametrik olmayan
yaklaşım sadece verilere dayanır ve "verinin kendi adına konuşmasına izin verir".
Parametrik olmayan yoğunluk fonksiyonu kestirimi ekonomi, bankacılık, genetik,
klimatoloji, hidroloji gibi çok çeşitli alanlarda karşımıza çıkar. Bu nedenle, parametrik
olmayan yaklaşım ile ilgili literatürde birçok çalışma mevcuttur ve yoğunluk
fonksiyonu kestirimi için çeşitli metodlar önerilmiştir. Bu metodlardan çekirdek
kestirimi, ortogonal kestirim metodu ve delta dizileri metodu en çok kullanılan
metodlardır.

Tezin ilk bölümünde, yoğunluk fonksiyonu kestirim problemi hakkında kısa bir giriş
yapılarak, kullanım alanları açıklanmıştır. Daha sonra, çekirdek kestirimi, ortogonal
kestirim metodu ve delta dizileri metodu ile ilgili literatür özeti verilmiştir. Son olarak,
tezin amacı açıklanarak ilk bölüm tamamlanmıştır.

İkinci bölümde, bu tezde kullanılan temel tanımlar ve metodlar verilmiştir. Yoğunluk
fonksiyonu kestirimi için en çok kullanılan metodlar açıklanmıştır. Ayrıca kestiricinin
performansını ölçmek için gerekli ve kullanışlı metodlar tanıtılmıştır. Daha
sonra, yoğunluk fonksiyonu kestirimi için çok önemli olan bant genişliği seçimi
metodlarından bahsedilmiştir.

Üçüncü bölümde, delta dizileri metodu çalışılmıştır. Yoğunluk fonksiyonu kestirimi
ile ilgili literatürdeki çalışmalarda, yoğunluk fonksiyonu ve türevleri üzerine
düzgünlük koşulu yazılmaktadır. Ancak, yoğunluk fonksiyonunun süreksiz olduğu
noktaların var olduğu birçok uygulama mevcuttur. Dolayısıyla, düzgünlük koşulu
yoğunluk fonksiyonu sınıflarını kısıtlar ve bu kısıtın kaldırılması ya da hafifletilmesi
uygulamada oldukça önemlidir. Bu amaçla, yoğunluk fonksiyonu üzerindeki koşullar
ikinci dereceden süreklilik modülü majorantları cinsinden yazılarak literatürdeki
çalışmalarda çoğunlukla kullanılan ikinci dereceden diferansiyellenebilme koşulu
hafifletilmiştir. Ayrıca, tek değişkenli ve çok değişkenli durumlar için d-değişkenli
delta dizileri yardımıyla yazılmış kestiricilerin bir noktada ortalama karesel hata
yakınsaklık hızı incelenmiş ve birinci dereceden sonlu farklar yardımıyla yazılmış
yoğunluk fonksiyonu kestiricileri için daha önce elde edilen sonuçlar iyileştirilmiştir.
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Dördüncü bölümde, ortogonal seri kestirim metodu çalışılmıştır. Yoğunluk fonksiyonu
kestiricileri Hermite serileri kullanılarak delta dizileri yardımıyla yazılmıştır. Böylece
sonsuz destekli yoğunluk fonksiyonları için kestiricilerin bütünleşik hata kareleri
ortalaması (MISE) yakınsama hızı elde edilmiştir. Daha sonra, kompakt destekli
yoğunluk fonksiyonları için yazılmış kestiricilerin bütünleşik hata kareleri ortalaması
ve ortalama karesel hata (MSE) yakınsaklık hızları incelenmiştir. Delta dizilerinin
kullanılması, literatürde daha önce Hermite serileri yardımıyla yazılmış kestiriciler için
elde edilen sonuçların iyileştirilmesini sağlamıştır.

Beşinci bölümde ise çekirdek metodu çalışılmıştır. Çekirdek metodu parametrik
olmayan kestirim metodlarından en yaygın olanıdır. Bu metodda, çekirdek genellikle
simetrik olup, çekirdek seçiminin band genişliği seçiminden daha az önemli olduğu
düşünülmektedir. Ancak, yoğunluk fonksiyonu kompakt ya da yarı sonlu desteğe
sahip olduğunda klasik simetrik çekirdekler ile yazılmış kestiriciler sınır yanlılığı
sorununa neden olmaktadır. Bu problemin çözümü için literatürde birçok yöntem
mevcuttur. Son zamanlarda önerilen bir yöntem ise klasik simetrik çekirdek ile
yazılmış kestirici yerine asimetrik çekirdek ile yazılmış kestirici kullanmaktır. Bu
tezde klasik kestirici yerine, beta prime yoğunluk fonksiyonu uygun parametrelerle
çekirdek yerine kullanılarak, yeni bir asimetrik çekirdek kestiricisi önerilmiştir.
Önerilen yeni kestiricinin, sınır yanlılığı problemini çözdüğü ve optimal ortalama
karesel hata ve bütünleşik hata kareleri ortalaması yakınsama hızına sahip olduğu
gösterilmiştir. Diğer asimetrik kestiricilerde olduğu gibi, düzlemenin yapıldığı
noktadan uzaklaştıkça varyansın azaldığı gözlenmiştir. Bu da gözlemlerin seyrek
olduğu yoğunluk fonksiyonu kestiriminde avantaj sağlayan bir özelliktir. Ayrıca,
simülasyon çalışmaları yardımıyla, bu kestiricinin sonlu örnek özellikleri incelenmiş
ve bu kestirici ile literatürde var olan asimetrik kestiricilerin ortalama bütünleşik
karesel hataları (ISE) karşılaştırılmıştır. Kalın kuyruklu yoğunluk fonksiyonları
için klasik bant genişliği seçim metodlarının yetersiz kaldığı bilinmektedir. Bu
nedenle, kalın kuyruklu yoğunluk fonksiyonları kestirimi için klasik bant genişliği
seçim metodları yerine uyarlamalı Bayesian bant genişliği seçim metodu, asimetrik
kestiricilerin bant genişliği için daha önce kullanılmamış bir metot olan Lindley
yaklaşımı yardımıyla kullanılmıştır. Bu yaklaşımdan elde edilen bant genişlikleri
ile klasik en küçük kareler çapraz geçerleme (LSCV) metodundan elde edilen bant
genişliklerinden alınan ortalama bütünleşik karesel hataları karşılaştırılarak önerilen
metodun kullanışlılığı gösterilmiştir. Daha sonra, elde edilen sonuçlar gerçek veriler
kullanılarak örneklenmiştir.

Altıncı bölümde ise ölçeklendirilmiş ters ki kare yoğunluk fonksiyonu kullanılarak
yeni bir asimetrik çekirdek kestirici önerilmiştir. Bu kestiricinin asimptotik özellikleri
incelenerek ortalama karesel hata ve bütünleşik hata kareleri ortalaması optimal
yakınsama hızına sahip olduğu gösterilmiştir. Ölçeklendirilmiş ters ki kare kestiricisi
için, bir önceki bölümde önerilen Lindley yaklaşımı yardımıyla uyarlamalı Bayesian
bant genişliği seçim metodu ile elde edilen bant genişliklerinden alınan ortalama
bütünleşik karesel hataları değerinin en küçük kareler çapraz geçerleme ile elde edilen
bant genişliklerinden elde edilenden çok daha küçük olduğu gözlenmiştir. Simulasyon
çalışmalarında ayrıca, yeni önerilen kestirici ile beta prime kestiricileri ve Birnbaum
Saunders power-exponential çekirdek kestiricileri ortalama bütünleşik karesel hataları
karşılaştırmaları yapılmıştır. Ayrıca, gerçek veri uygulamalarıyla yeni kestiricinin
performansı incelenmiştir. Beta prime çekirdek kestiriciler için yapılan çalışmalarda
sınırda omuz şekline sahip verilerin ("shoulder data") uygun olmadığı buna karşı yeni
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önerilen kestiricinin uygun olduğu gösterilmiştir. Böylece yeni kestiricinin beta prime
kestiricisine alternatif olarak kullanılabileceği düşüncesi ortaya çıkmıştır.

Son bölümde ise bu tezde elde edilen sonuçlar açıklanarak, gelecekte yapılabilecek
çalışmalardan bahsedilmiştir.
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1. INTRODUCTION

Density estimation is one of the fundamental research topic of statistics since the

late 1950’s. First, density estimation was considered from theoretical point of view.

However, the development in technology of computing created extensive interest not

only in theoretical but also in practical aspect. Thereafter, nonparametric density

estimation is used in different fields such as economics, banking, genetics, hydrology,

climatology as well as many branches of statistics.

Density estimation is the construction of an accurate and a robust estimator of an

unknown density function from the observed data. There are two approaches of density

estimation: parametric and nonparametric. In parametric approach, the density of the

underlying data is drawn from one of the known parametric family of distributions,

namely the shape of the density assumed to be known. Then, one can create a

parametric density estimate of a density f underlying the data by plugging in estimators

for those parameters. On the other hand, nonparametric approach relies solely on the

data and allows the "data speaks for itself" without any assumption about the shape of

the underlying density.

The studies on nonparametric density estimation problem was introduced by

pioneering work of [1]. After that, a lot of studies are performed. In those studies,

observations were generally assumed to be independent and identically distributed

(i.i.d.) random variables. Depending on the assumptions of the density function to

be estimated, different results for the local and global convergency rate of the mean

integrated square error (MISE) and mean square error (MSE) are obtained.

The kernel method for the estimation of the i.i.d. observations with the continuous

and symmetric density functions is one of the main interest in the statistics and it first

appeared in paper [1]. Then, the kernel method for the univariate case was studied

and it was shown that the convergency rate of the MSE is optimal when the density

function has two continuous derivatives as one can see in paper [2]. The assumptions

on the density functions were written in terms of the derivatives and Lipschitz condition

1



in paper [3]. In that paper, more general density estimation problem which is called

delta sequence method is studied and different delta sequence estimators depending

on the local and global properties of the density functions are considered. For the

results obtained in [3], the dominant terms in expansions of the MSE and MISE for the

trigonometric series density estimators is obtained in [4]. After that, some asymptotic

properties of the delta sequence based density estimators for the multivariate case were

studied in [5].

There is also a vast literature about an orthogonal series density estimation and in

those studies, estimators are written in terms of the classical orthogonal polynomials

including Legendre, Jacobi and Hermite. The choice of orthogonal polynomial

depends on the support of the density function. If the support is real line or the

half line then the Hermite or Laguerre series are useful. On the other hand, if the

support is compact, then Jacobi series or trigonometric series are recommended to use.

Orthogonal series estimation with the estimators based on the Hermite functions is

studied in [6]. They obtained the consistency and the rate of the convergence for the

MSE of the univariate and multivariate densities by writing the additional conditions

on the density functions. Also, Hermite series estimators for the estimation of the

density function, its derivatives and characteristic function were studied in [7]. After

that, the orthogonal series estimation was studied in [8]. They proposed an estimator

for the derivatives of the density function by using Hermite series and obtained better

convergency rate of the MISE and the convergency of the MSE than the former studies.

In paper [9], the asymptotic properties of the estimators based on the Jacobi and

Legendre polynomials by using delta sequence method was studied. In that paper,

the certain summability methods were used to avoid the negative values of orthogonal

series estimators and also, the MSE and MISE convergency rate were obtained for the

densities having compact support. Recently, the rate of convergence of the MSE of

the estimators for the multivariate case based on delta sequence method is investigated

in [10]. Unlike the former studies, the assumptions on the density function were written

in terms of the first order modulus of continuity type majorants.

In the literature, it is widely believed that the choice of smoothing bandwidth is of

crucial importance than the choice of kernel functions. Therefore, most of the studies

about kernel density estimation problem considered symmetric kernels. However,

2



when the support of the density function is half line or compact then classical

symmetric kernel estimators yield the boundary bias problem. Boundary bias problem

occurs when kernels with infinite support are used for data with semi infinite or

compact support, since this would lead to a leakage of probability mass. Many

methods are proposed to overcome the boundary bias problem including data reflection

method discussed in [11], boundary kernel method studied in [12], [13], hybrid method

suggested by [14], the local linear estimator given in [15], empirical transformation

method proposed in [16] and generating pseudodata developed in [17].

As an alternative method to remove the boundary bias problem, the use of asymmetric

beta distribution as kernel when estimating densities with compact support was

proposed by [18]. In this method, support of the asymmetric kernel matches the

support of the density to be estimated and the amount of smoothing are controlled

by the suitable parametrization chosen for the kernel functions. Then, for the densities

with semi infinite support, two new asymmetric kernel estimator was developed by

using gamma distribution as kernel in paper [19]. After that, this method was used

to develop the lognormal and Birnbaum-Saunders kernel estimators given in [20]. In

that paper, it was shown that these two kernel estimators are suitable for the high

frequency or ultra frequency data via simulation studies and real data application

of the high frequency financial intraday time duration data. Then, inverse gaussian

(IG) and reciprocal inverse gaussian (RIG) kernel estimators are proposed in paper

[21]. As more recent studies generalized Birnbaum-Saunders, skewed generalized

Birnbaum-Saunders kernel estimators are proposed by [22], [23]. In paper [24], the

estimators studied in papers [20] and [21] was reformulated. Also, inverse gamma

kernel estimator was developed by [25] and then, this new estimator was reformulated

and its asymptotic properties were studied in [26]. Moreover, in paper [27], weighted

distributions are used to propose a new class of lognormal kernel estimators which is

first studied in paper [20].

All of the papers discussed above used classical global bandwidth selection methods.

However, for some distributions, global bandwidth selection methods result in

unsatisfactory outcomes. Estimators obtained with global bandwidth selectors tend

to under or over smooth density functions. Because of this reason, the adaptive

Bayesian bandwidth selection method for the univariate symmetric kernel estimators
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was proposed in paper [28]. Unlike the classical methods, the bandwidth is considered

as a parameter of the model. In study [29], the adaptive Bayesian method was used for

the asymmetric Birnbaum-Saunders power exponential (BS-PE) kernel estimators to

estimate the heavy tailed densities. Also, the adaptive Bayesian bandwidth selection

for multivariate discrete associate kernel estimator based on finite differences are

studied in paper [30].

Studies on nonparametric density estimation with censored data was initiated by the

work of [31]. In paper [32], comprehensive review about the earlier density estimation

methods for the censored data was given. The density estimation using asymmetric

kernels was studied in [33] for the right censored case. In that paper, a data driven

Bayesian local bandwidth selection method was used. Then, Gamma kernel estimator

discussed in [19] is adapted to the right censored case for the density and hazard rate

functions by [34].

In this thesis, the density estimation based on the delta sequence method, the

orthogonal series method and the asymmetric kernel method are of major interest. The

basic methodological approach of the theory is to obtain closeness of the estimator

to the true density in various ways. The most studied measures of discrepancy is

the MSE and MISE. So, in this dissertation, the rate of convergency of MSE of an

estimator is derived when estimating densities at a single point. Moreover, for the

global accuracy of an estimator the rate of convergency of MISE is investigated. In

Chapter 3, the delta sequence method is considered for both univariate and multivariate

cases. The motivation was to find an answer whether the MSE rate of convergence

of an estimator is improved when using densities belonging to the class of functions

defined by second order finite differences over the class of functions defined by first

order finite differences. For this purpose, the conditions on density function are

written in terms of the second order modulus of continuity type majorants. Moreover,

the second order differentiability assumption is weakened by utilizing second order

modulus of continuity type majorants. It is an advantage since there is applications

in which the discontinuity of the density function is natural. As a result, the MSE

rate of convergency is obtained better than the one obtained by using first order finite

differences. In Chapter 4, the orthogonal series method is considered and the delta

sequence estimators based on Hermite polynomials are studied instead of classical
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Hermite series estimators. Then, the MSE and MISE rate of convergence show that,

the delta sequence estimators based on Hermite polynomials gives better estimates

than the former studies. In Chapters 5 and 6, the asymmetric kernel method is studied

to fix the boundary bias problem. A new estimator is proposed based on beta prime

distribution function in Chapter 5. Then, for the theoretical treatment the MSE and

MISE rate of convergence of beta prime estimator are discussed. After that, the

finite sample properties of the beta prime estimator are investigated via Monte Carlo

simulation studies. Furthermore, adaptive Bayesian bandwidth selection method is

used with Lindley’s approximation for the heavy tailed density functions. This method

is new for the asymmetric kernel estimators. It is shown that the bandwidths obtained

from adaptive Bayesian bandwidth selection method yields better estimates than the

one obtained from the classical least squares cross validation method. Then, real data

examples are given to illustrate the findings. In Chapter 6, a new asymmetric kernel

estimator is proposed by using scaled inverse chi-squared density estimator. Similar

to the existing kernel estimators, it is shown that, the proposed estimator is free of

boundary bias problem and achieves the optimal rate of convergence of MSE and

MISE. Numerical studies are conducted to compare the average ISE performance of

bandwidths obtained from LSCV method with the bandwidths obtained from adaptive

Bayesian method. Moreover, real data applications demonstrated that the scaled

inverse chi-squared estimator is suitable to capture the bumps of the models. Also,

it is suitable to use this proposed estimator when the estimated density has a shoulder

near zero unlike the beta prime estimator.
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2. BACKGROUND AND BASIC DEFINITIONS

In this chapter, the preliminary definitions and background of this dissertation are

given.

2.1 Notation

It is assumed that the observations X1,X2, ...,Xn are independent and identically

distributed (i.i.d.) random variables (r.v.) with probability density function (pdf) f .

The symbol f̂ will be used to denote the estimator of density functions which are

under consideration.

2.2 Definitions and Background

Definition 1. Let F be a collection of subsets of a nonempty set Ω. Then F is called a

σ −algebra if it satisfies the following properties:

i. The empty set /0 ∈ F,

ii. If A ∈ F, then the complement Ac ∈ F,

iii. If A1,A2, ... is a sequence of elements of F, then their union
∞⋃

i=1
Ai ∈ F.

A pair (Ω,F) consisting of a set Ω and a σ −algebra F is called a measurable space.

The elements of F are called measurable sets or events.

Definition 2. Let (Ω,F,P) be arbitrary probability space, and let X be a real valued

function on Ω; X is a random variable (r.v.) if X = X(w) is a F-measurable function,

or equivalently X−1 (U) = {w ∈Ω : X (w) ∈U} ∈ F.

There are two types of random variables, discrete and continuous. A discrete r.v. takes

on only countable number of distinct values. A continuous r.v takes an infinite number

of possible values (i.e. its range is closed or open interval).
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2.3 Density Estimation

The problem of constructing an estimator for a set of observed data points based on

unknown pdf is called density estimation. There are a lot of approaches to density

estimation problem. Among many available approaches, the most used are histogram,

kernel density estimator, orthogonal series estimator and delta sequence estimator, see

[35].

2.3.1 Histogram

The oldest and simplest approach in density estimation is the histogram. If we have

an origin x0 and a bin width h, then the bins of the histogram yields to be the intervals

[x0 +mh,x0 +(m+1)h] for integers m. In such case, the density estimator will be,

f̂ (x) =
1
n

number of observations Xi in the same bin
length of the bin

(2.1)

Although the histogram is the simplest and useful way to estimate a density function,

it is often necessary to use more sophisticated method. Because, histogram method

can have drawback when derivatives of the density estimates are required. Also,

the histogram method substantially depends on the choice of origin. So, alternative

methods to histogram are proposed.

2.3.2 Kernel Density Estimator

The kernel density estimator (KDE) is one of the most used method for density

estimation. The kernel estimator is defined as

f̂ (x) =
1

nh

n

∑
i=1

K
(

x−Xi

h

)
(2.2)

where, h > 0 is the smoothing bandwidth, K(x) is kernel function that is always

nonnegative, generally assumed to be symmetric and smooth function, see Figure 2.1

The kernel K satisfies the following conditions:∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
u2K(u)du = k2 < ∞ (2.3)

Since kernel K usually considered as symmetric pdf, the constant k2 will then be

variance of the distribution with this density. Also, the kernel K is everywhere

nonnegative and integrates to unity, i.e. probability density function, then from the
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Figure 2.1 : KDE for faithful data.

definition, f̂ itself be a pdf. Moreover, f̂ inherits all the continuity and differentiability

properties of the kernel K.

Basically, the KDE smoothes each data point Xi into a small density bumps and then by

adding all these small bumps together it constructs the final density estimate, see Figure

2.2. The kernel function K determines the shape of the bumps while the bandwidth h

determines their width. If the bandwidth h is chosen too large then all the detail of the

distribution obscured. Otherwise, if the bandwidth h is chosen too small the structure

of the distribution spurious, see Figure 2.3. That’s why a lot of methods proposed to

choose the bandwidth in the literature.

2.3.3 Orthogonal Series Estimators

Suppose that a density function f (x) is given by

f (x) =
∞

∑
i=0

aiφi (x) ,x ∈ I (2.4)

where ai =
∫

I f (x)φi (x)dx and {φi}i≥0 be a complete set of orthonormal basis

functions on an interval I. Then, the orthogonal series estimator is

f̂ (x) =
m

∑
i=0

âiφi (x) (2.5)
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Figure 2.2 : Kernel estimation with Gaussian kernel.

Figure 2.3 : Effect of bandwidths values to KDE.

for some integer m≥ 0, and âi is an unbiased estimator of ai, since

ai =
∫

I
f (x)φi (x)dx = E [φi (x)]

≈ 1
n

n

∑
j=1

φi
(
X j
)
≡ âi

(2.6)

where X1, ...,Xn is a sequence of i.i.d. random variables.

2.3.4 Delta Sequence density estimation method

Let J be an open interval of the real line R. A sequence {δm(x, t)} of bounded,

measurable function on J × J is a delta sequence on J, if for each x ∈ J and each

10



C∞−function φ with support in J,

lim
m→∞

∫
J

δm(x, t)φ(t)dt = φ(x). (2.7)

Then, delta sequence density estimator can be defined as

f̂ (x) =
1
n

n

∑
i=1

δm(x,Xi) (2.8)

Definition 3. A delta sequence {δm} is said to be a positive type delta sequence if for

x, t ∈ Rd

(a) δm(x, t)≥ 0;

(b)
∫

Rd
δm(x, t)dt = 1;

(c) δm(x, t)≤ cmd 1
1+(m|t−x|)d+2 , where c is a positive constant.

2.4 Mean Square Error and Mean Integrated Square Error

Various measures have been studied to discuss the closeness of the estimator f̂ to the

true density f . A natural measures of discrepancy is mean square error (MSE) when

estimating densities at a single point. MSE is defined by

MSE
(

f̂ (x)
)
= E

(
f̂ (x)− f (x)

)2
=
(

E
(

f̂ (x)
)
− f (x)

)2
+ var

(
f̂ (x)

)
(2.9)

the sum of squared bias and variance at x. There is a relation between bias and variance

terms in equation (2.9). The bias can be reduced at the expense of increasing variance,

and vice versa, by adjusting the amount of smoothing. For the global accuracy of the

density estimator, the most widely used measure of discrepancy is the mean integrated

square error (MISE), and it is defined by

MISE
(

f̂ (x)
)
= E

∫ {
f̂ (x)− f (x)

}2
dx (2.10)

There are other global measures of performance of estimators such as mean integrated

absolute error, but due to its mathematical tractability the MISE criterion is widely used

in the literature. MISE can be expressed in an another way due to negative integrand

in (2.10). When order of integration and expectation reversed by Fubini theorem, the

MISE can be expressed in terms of its bias and variance, such as;

MISE
(

f̂ (x)
)
=
∫

E
{

f̂ (x)− f (x)
}2

dx =
∫

MSEx

(
f̂
)

dx

=
∫ {

E f̂ (x)− f (x)
}2

dx+
∫

var
(

f̂ (x)
)

dx
(2.11)

11



Some approximate properties are the followings;

biash(x) = E f̂ (x)− f (x) =
∫ 1

h
K
(

x− y
h

)
f (y)dy− f (x) (2.12)

This equation can be used to obtain an approximate expression for the bias. Change of

variable (x− y)/h = t gives

biash(x) =
∫

K(t) f (x−ht)dt− f (x) =
∫

K(t) [ f (x−ht)− f (x)]dt (2.13)

Then, Taylor series expansion yields

f (x−ht) = f (x)−ht f ′(x)+
1
2

h2t2 f ′′(x)+ .. (2.14)

and equation gives

biash(x) =−h f ′(x)
∫

tK(t)dt +
1
2

h2 f ′′(x)
∫

t2K(t)dt + ...

=
1
2

h2 f ′′(x)k2 +higher order terms in h
(2.15)

∫
biash(x)2dx≈ 1

4
h4k2

2

∫
f ′′(x)2dx (2.16)

Now, variance term can be written as

var f̂ (x) =
1
n

∫ 1
h2 K

(
x− y

h

)2

f (y)dy− 1
n
{ f (x)+biash(x)}2

=
1

nh

∫
f (x−ht)K(t)2dt− 1

n

{
f (x)+O(h2)

}2
(2.17)

Then, using Taylor series expansion variance term can be obtained as

var f̂ (x)≈ 1
nh

∫ {
f (x)−ht f ′(x)+ ...

}
K(t)2dt +O

(
1
n

)
=

1
nh

f (x)
∫

K(t)2dt +O
(

1
n

)
≈ 1

nh
f (x)

∫
K(t)2dt

(2.18)

Since f is a pdf, then integrated variance term is∫
var f̂ (x)dx =

1
nh

∫
K(t)2dt (2.19)

Therefore, combining integrated bias and variance, MISE can be written as

MISE
(

f̂ (x)
)
=

1
4

h4k2
2

∫
f ′′(x)2dx+

1
nh

∫
K(t)2dt. (2.20)

The optimal bandwidth minimizing MISE is,

hopt = k−2/5
2

{∫
K(t)2dt

}1/5{∫
f ′′(x)2dx

}−1/5

n−1/5. (2.21)

For detailed information see [35].
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2.5 Bandwidth Selection

The problem of choosing the smoothing bandwidth is of crucial importance in density

estimation. The purpose of the estimation can be influential in the appropriate choice of

bandwidth. If the purpose is just to explore data in order to suggest possible models and

hypothesis, then it is sufficient to subjectively choose the bandwidth by looking at the

density estimates produced by a range of bandwidths. However, for many applications

this approach is impractical, so the requirement for automatic choice of smoothing

bandwidths arises. Different methods are proposed to choose the optimal bandwidth

such as plug-in, least squares cross-validation (LSCV), likelihood cross-validation

(LCV), etc.

2.5.1 Plug-in method

The intuitive and simple way to obtain bandwidths is plug-in method. Since the ‖ f ′′‖2
2

is unknown in (2.21), it was proposed to assign a value to the ‖ f ′′‖2
2 for the ideal

bandwidth in [35]. For example, if a Gaussian kernel is being used, then∫
f ′′(x)2dx = σ

−5
∫

φ
′′(x)2dx

=
3
8

π
−1/2

σ
−5 ≈ 0.212σ

−5
(2.22)

So, substituting this into the equation (2.21), optimal bandwidth can be obtained as

hMISE = (4π)−1/10
(

3
8

π
−1/2

)−1/5

σn−1/5 =

(
4
3

)1/5

σn−1/5 = 1.06σn−1/5 (2.23)

For obtaining the better results, interquartile range can be used as a robust alternative

for a standard deviation. This modified version (see [35])

hrobust = 1.06min
(

standard deviation,
interquartile range

1.34

)
n−1/5 (2.24)

2.5.2 Least Squares Cross-Validation method

Given any estimator f̂h of a density f , we know ISE can be written as

ISE( f̂h(x)) =
∫ {

f̂h(x)− f (x)
}2

dx =
∫

f̂h(x)2dx−2
∫

f̂h(x) f (x)dx+
∫

f (x)2dx.

(2.25)

Since the last term of ISE does not depend on f̂h, so the ideal choice of bandwidth

corresponds to the choice which minimizes the quantity defined by

R( f̂h) =
∫

f̂h(x)2dx−2
∫

f̂h(x) f (x)dx. (2.26)
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The idea of LSCV is to construct an estimate of R( f̂h) from the data themselves and

then minimize this estimate over h to give the choice of window width. Define f̂h,−i to

be the density estimate constructed from all the data points except Xi, that is

f̂h,−i(x) =
1

(n−1)h ∑
j 6=i

K
(

x−X j

h

)
, (2.27)

Now, define

M(h) =
∫

f̂h(x)2dx− 2
n ∑

i
f̂h,−i (Xi) . (2.28)

The score M depends only on the data. So, the basic principle of LSCV is to minimize

M over h.

2.5.3 Likelihood Cross-Validation

The likelihood cross-validation choice of h is the value of h which maximizes the

function CV (h)

CV (h) =
1
n ∑

i
log f̂h,−i (Xi) (2.29)

for the given data. This method, does not present severe computational difficulties.

Maximizing CV(h) should yield a density estimate which is close to the true density in

terms of Kullback-Leibler information distance, defined by

I( f , f̂h) =
∫

f (x) log
{

f (x)/ f̂h(x)
}

dx. (2.30)
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3. DELTA SEQUENCE DENSITY ESTIMATION USING SECOND ORDER
MODULUS OF CONTINUITY TYPE MAJORANTS

3.1 Purpose

In this chapter, the local convergence rate of MSE corresponding to d-variate delta

sequence density estimator are obtained for both univariate and multivariate cases. To

weaken the differentiability conditions used in the former studies, the assumptions on

the density function are written using the second order modulus of continuity type

majorants.

Throughout this chapter, x =(x1,x2, ...,xd) denotes a point in the d-dimensional

Euclidean space Rd and dx denotes
d
∏
i=1

dxi.

3.2 Second Order Modulus of Continuity Type Majorants

This section mainly stems from the use of second order modulus of continuity type

majorants. So, the definition of higher order modulus of continuity and its some of the

useful properties are given below.

Definition 4. The modulus of continuity of order k ≥ 1 of a function f ∈ C ([a,b]) is

defined as follows:

wk(t) = wk( f ;a,b; t) = sup
x∈[a,b], x+kh∈[a,b], |h|≤t

∣∣∣∆k
h f (x)

∣∣∣ (3.1)

where

∆
k
h f (x) =

k

∑
ν=0

(−1)k−ν

(
k
ν

)
f (x+νh) (3.2)

defined for non-negative values of t ≤ b−a
k .

In this dissertation second order modulus of continuity is used, so k = 2. For detailed

discussion of higher order modulus of continuity, one can refer to [36].

Definition 5. A function wk(t) : [0,1]→ [0,∞) which satisfies the conditions:
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(a) wk(0) = 0,

(b) wk is nondecreasing,

(c) wk is continuous,

(d) t−k
2 wk(t2)≤ 2kt−k

1 wk(t1), 0≤ t1 ≤ t2

is called kth order modulus of continuity type majorant.

Modulus of smoothness generally used in approximation theory, Fourier analysis and

their applications. It describes the structural properties of functions; in particular, they

describe the measure of smoothness of the function via the k-th difference ∆k
h f (x). In

fact, for functions belonging to the Lebesgue space Lp, 1 ≤ p < ∞ or the space of

continuous functions C, the classical k-th modulus of continuity has turned out to be a

rather good measure for determining the rate of convergence of best approximation.

Following inequalities are necessary for the derivation of the proof.

w2(nt)≤ n2w2(t), n ∈ N (3.3)

∀t ≥ 1, ∀δ > 0

w2(tδ )≤ (2t)2 w2(δ ). (3.4)

In particular when t = 1
δ

then

w2(1)≤
22

δ 2 w2(δ ). (3.5)

Then, from the property (d) of the Definition 5

w2(δ ) = w2(δ )
δ 2

δ 2 =
w2(δ )

δ 2

δ∫
0

2tdt ≤ c
δ∫

0

w2(t)
t

dt. (3.6)

The following operator is also useful for the derivation of the proof.

Definition 6. (see [37]). For the second order modulus of continuity type majorant

w2,

Z2(w2,δ ) =

δ∫
0

w2(t)
t

dt +δ
2

1∫
δ

w2(t)
t3 dt (3.7)

is called Zygmund operator.
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Now, let {Xn} be a sequence of i.i.d. random vectors in Rd with density function f (x).

The delta sequence density estimator of f (x) defined by

f̂n,m(x) =
1
n

n

∑
i=1

δm (x,Xi) (3.8)

where {δm} with m = m(n) is a positive type delta sequence.

3.3 MSE of Delta Sequence Based Density Estimators Using Second Order

Modulus of Continuity Type Majorants

In this subsection, the bias and variance of the estimator are investigated separately,

since MSE of an estimator is defined as the sum of squared bias and variance of

estimator at a point.

Theorem 1. Let f ∈ Lp(Rd),1≤ p < ∞ and {δm} be a delta sequence of positive type.

(i)
∫

δm(x, t) f (t)dt→ f (x) a.e. Lebesgue(x);

(ii) If there exist η > 0 such that | f (x+ t)+ f (x− t)−2 f (x)| ≤ cw2 (|t|) , |t| ≤ η < 1,

then the order of bias term∣∣∣∣∫ δm(x, t) f (t)dt− f (x)
∣∣∣∣= O

(
Z2

(
w2,

1
m

))
. (3.9)

Proof. Part (i) is similar to Theorem 1.25 of [38], so its proof is not given. For (ii), by

using change of variable and adding and subtracting some terms, it is obtained as∣∣∣∣∣∣
+∞∫
−∞

δm(x, t) f (t)dt− f (x)

∣∣∣∣∣∣=
∣∣∣∣∣∣12

+∞∫
−∞

δm(x,x+ t) [ f (x+ t)+ f (x− t)−2 f (x)]dt

∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
|t|≤η

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫
|t|≥η

∣∣∣∣∣∣∣= I1 + I2

(3.10)

By a change of variable to polar coordinates and using properties of positive type delta

sequence gives for m≥ η−1 :

I1 ≤ c1

η∫
0

md

1+(mr)d+2 rd−1w2(r)dr

= c1


1
m∫

0

md

1+(mr)d+2 rd−1w2(r)dr+

η∫
1
m

md

1+(mr)d+2 rd−1w2(r)dr

= c1

(
I
′
1 + I

′′
1

)
.

(3.11)
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Let’s investigate I
′
1 and I

′′
1 separately. Since 0≤ r ≤ 1

m , a bound for I
′
1 can be obtained

as

I
′
1 =

1
m∫

0

md

1+(mr)d+2 rd−1w2(r)dr

≤ c2

1
m∫

0

w2(r)
r

dr.

(3.12)

For I
′′
1

I
′′
1 =

η∫
1
m

md

1+(mr)d+2 rd−1w2(r)dr ≤ c3

m2

η∫
1
m

w2(r)
r3 dr. (3.13)

Hence by combining I
′
1 and I

′′
1 , a bound for I1 can be obtained as

I1 ≤ c4


1
m∫

0

w2(r)
r

dr+
1

m2

η∫
1
m

w2(r)
r3 dr

= O
(

Z2

(
w2,

1
m

))
. (3.14)

For I2 the cases d > 1 and d = 1 should be investigated separately. When d > 1 using

Hölder inequalities,

I2 =

∣∣∣∣∣∣∣
∫
|t|≥η

δm(x,x+ t) [ f (x+ t)+ f (x− t)−2 f (x)]dt

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
∫
|t|≥η

δm(x,x+ t) f (x+ t)dt

∣∣∣∣∣∣∣+
∣∣∣∣∣∣∣
∫
|t|≥η

δm(x,x+ t) f (x− t)dt

∣∣∣∣∣∣∣
+2

∣∣∣∣∣∣∣
∫
|t|≥η

δm(x,x+ t) f (x)dt

∣∣∣∣∣∣∣
≤ 2‖ f‖p

∥∥ψηδm
∥∥

q +2 | f (x)|
∥∥ψηδm

∥∥
1

(3.15)

where ψη = χ{t∈Rd :|t|>η}.
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Now, to obtain an order for the
∥∥ψηδm

∥∥
q term, it can be written as follows

∥∥ψηδm
∥∥

q =

[∫ ∣∣ψηδm
∣∣q dt

] 1
q

=

 ∫
|t|≥η

(δm(x,x+ t))qdt


1
q

≤ c5

 ∞∫
η

(
md

(mr)d+2 rd−1
)q

dr

 1
q

= c5

( 1
m2

)q ∞∫
η

(
r−3q)dr

 1
q

= O
(

1
m2

)
.

(3.16)

For
∥∥ψηδm

∥∥
1 ∥∥ψηδm

∥∥
1 =

[∫ ∣∣ψηδm
∣∣dt
]
≤ c6

∫
r≥η

md

(mr)d+2 rd−1dr

=
c6

m2

∫
r≥η

dr
r3 = O

(
1

m2

)
.

(3.17)

Therefore, (3.16) and (3.17) imply

I2 = O
(

1
m2

)
. (3.18)

When d = 1 :

I2 =

∣∣∣∣∣∣∣
∫
|t|≥η

δm(x,x+ t) [ f (x+ t)+ f (x− t)−2 f (x)]dt

∣∣∣∣∣∣∣
≤

∫
|t|≥η

|δm(x,x+ t)| | f (x+ t)|dt +
∫
|t|≥η

|δm(x,x+ t)| | f (x− t)|dt

+2 | f (x)|
∫
|t|≥η

|δm(x,x+ t)|dt

(3.19)

For the first term of (3.19),∫
|t|≥η

|δm(x,x+ t)| | f (x+ t)|dt ≤max
t≥η

δm(x,x+ t)
∫
|t|≥η

| f (x+ t)|dt

≤ 1
m2η3 c7 = O

(
1

m2

)
.

(3.20)

For the other terms, the same order can be obtained similarly. Hence, for d > 1 and

d = 1

I2 = O
(

1
m2

)
(3.21)
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Therefore, by combining (3.14) and (3.21)

∣∣∣∣∫ δm(x, t) f (t)dt− f (x)
∣∣∣∣≤ c8

 1
m2 +

1/m∫
0

w2(r)
r

dr+
1

m2

η∫
1/m

w2(r)
r3 dr

 (3.22)

Then, using the properties of second order modulus of continuity type majorants a

bound for the 1
m2 term can be obtained as

1
m2 ≤

4
w2(1)

w2(
1
m
)≤ c9

1
m∫

0

w2(r)
r

dr. (3.23)

Finally, ∣∣∣∣∫ δm(x, t) f (t)dt− f (x)
∣∣∣∣= O

(
Z2

(
w2,

1
m

))
(3.24)

To obtain MSE of the estimator, first let us investigate the variance of the estimator.

nVar
{

f̂ (x)
}
=Var{δm(x, t)}=

∫
δ

2
m(x, t) f (t)dt−

(∫
δm(x, t) f (t)dt

)2

(3.25)

For the variance term, it is sufficient to obtain the rate for
∫

δ 2
m(x, t) f (t)dt. Since∫

δm(x, t) f (t)dt≤ ‖ f‖
∞

and ‖δm(x, t)‖∞
= O(md) then∫

δ
2
m(x, t) f (t)dt≤ sup

x
δm(x, t)

∫
δm(x, t) f (t)dt =O

(
md
)

(3.26)

Finally,

Var
{

f̂ (x)
}
= O

(
md

n

)
. (3.27)

Hence using the orders for the bias (3.24) and variance (3.27), the local convergency

rate for the MSE of the estimator is

MSE
{

f̂ (x)
}
=Var

{
f̂ (x)

}
+Bias2

{
f̂ (x)

}
= O

(
md

n
+Z2

2

(
w2,

1
m

))
.

(3.28)

Corollary 1. Let w2(t) = |t|α , 1 < α < 2, m = n
1

2α+d , then

MSE
{

f̂ (x)
}
= O

(
n−

2α

2α+d

)
. (3.29)

Corollary 2. Let w2(t) = |t|2 , m = n
1
5 then

MSE
{

f̂ (x)
}
= O

(
n−

4
d+4 (lnn)2

)
(3.30)
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In the following example, it is shown that the rate of the MSE of f̂ (0) is greater than

or equal to c2n−
4
5 (lnn)2 and the rate of the MSE of f̂ (0) is also less than or equal to

c2n−
4
5 (lnn)2 by the Corollary 2 when d = 1, which proves the MSE of f̂ (x) at x = 0

has the best possible convergency rate.

Example 1. Let

f (x) =

{
x(x+ |x|), −1≤ x≤ 1
0, elsewhere

and w2(t) = t2, and

δm(x,0) =
cm

1+(m |x|)3 . (3.31)

It can be seen that, f belongs to the function classes which is defined by second order

finite differences. Let us look at the rate of convergence at x = 0. For the bias term we

have

+∞∫
−∞

δm(x,0) f (x)dx− f (0) =
1∫
−1

cm

1+(m |x|)3 x2dx+
1∫
−1

cm

1+(m |x|)3 x |x|dx

=
c

m2 ln
∣∣1+m3∣∣≥ c1

m2 lnm

(3.32)

where m > 1. Hence, when m = n
1
5 we have

MSE
{

f̂ (0)
}
=Var

{
f̂ (0)

}
+Bias2

{
f̂ (0)

}
≥Bias2

{
f̂ (0)

}
= c2n−

4
5 (lnn)2 . (3.33)

By using second order modulus of continuity type majorants the faster convergency

rate of the MSE of the densities that belong to the class which is defined by second

order finite differences is obtained when compared to the one obtained by using the

first order finite differences.

21



22



4. DENSITY ESTIMATION BASED ON HERMITE POLYNOMIALS

In this chapter, delta sequence density estimation method based on Hermite

polynomials is proposed. The convergency rate of MSE and MISE of the density

estimators are obtained using Hermite polynomials for the densities having compact

or infinite support. By using delta sequence density estimation method, it is shown

that the convergency rate of the MISE is better than the rates obtained in papers

[6] and [7]. Moreover, for the density functions which have at least third order

derivative, the convergency rate of the MISE for the proposed estimator is faster

than the rate obtained in paper [8]. On the order hand, orthogonal series estimators

based on Hermite functions are useful in applied work. It requires considerably less

computational time than kernel estimators for large N since the computations are only

based on the recurrence relations for the Hermite functions. However, orthogonal

series estimators have a drawback since those estimators can take negative values as

oppose to modified Jakobi polynomials (see [9]). Hence, the problem of obtaining

a nonnegative orthogonal series estimator based on Hermite functions may be a

challenging work for future studies.

4.1 Delta Sequence Density Estimators Based on Hermite Polynomials

The Hermite orthonormal system over the real line R given by

hk(x) =
(

2kk!π
1
2

)− 1
2

Hk(x)e−
x2
2 , k = 0,1,2, ... (4.1)

where

Hk(x) = (−1)k ex2
(

dk

dxk

)
e−x2

(4.2)

is the kth Hermite polynomial.

It is known that the normalized Hermite functions {hk} are the complete orthonormal

system in L2(−∞,∞) and they satisfy the recurrence formulas

xhk =

(
k
2

) 1
2

hk−1 +

(
k+1

2

) 1
2

hk+1, k = 1,2, ... (4.3)
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and
d
dx

hk =

(
k
2

) 1
2

hk−1−
(

k+1
2

) 1
2

hk+1, k = 1,2, ... (4.4)

and satisfy the following inequalities (see [39]);

|hk(x)| ≤
c1

(k+1)1/12 , x ∈ (−∞,∞), k = 0,1,2... (4.5)

and

|hk(x)| ≤
c2

(k+1)1/4 , x ∈ (−a,a), k = 0,1,2... (4.6)

where a is any nonnegative integer and the constants c1 and c2 are independent of x

and k.

Let X1,X2, ...,XN be a sequence of i.i.d. random variables with unknown density

function f (x). Then, an unknown density function f can be written by means of the

Hermite series

f (x) =
∞

∑
k=0

akhk(x) (4.7)

with the Hermite coefficients defined by

ak =
∫

f (x)hk(x)dx. (4.8)

Throughout this chapter, we shall assume that f (x) is square integrable and we use c

or ci, i = 1,2, ...,m for any positive constant, independent of f . Now, by using Hermite

polynomials delta sequence density estimator can be defined as

f̂N,n(x) =
1
N

N

∑
i=1

δn(x,Xi) (4.9)

where

δn(x,Xi) =
n

∑
k=0

Hk(x)e−
x2
2(

2kk!π
1
2

) 1
2

Hk(Xi)e−
x2
2(

2kk!π
1
2

) 1
2
=

n

∑
k=0

hk(x)hk(Xi). (4.10)

Since orthogonal series density estimate can take negative values, then it is proposed

that density estimate at x is the max
[
0, f̂N,n(x)

]
. For the discussion of the MISE and

MSE, following two lemmas, proved by [6], are necessary.

Lemma 1. Assume that the function
(
x− d

dx

)r
f ∈ L2(−∞,∞) for some integer r > 0.

Then the coefficients ak, k = 1,2, ... satisfy the bound

|ak| ≤
c3

(2k)
r
2

(4.11)

where c3 is the L2 norm of
(
x− d

dx

)r
f .
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Lemma 2. Let f(x) be continuous, of bounded variation, L1 and L2 in (−∞,∞). Then,

the series in

f (x) =
∞

∑
k=0

akhk(x) (4.12)

converges uniformly in any interval interior to (−∞,∞).

4.1.1 Convergency rate of MISE of estimators for densities having infinite

support

Theorem 2. Let
(
x− d

dx

) j
f ∈ L2(−∞,∞) for j = 1,2, ...,r; then the MISE rate of (4.9)

satisfies

MISE( f̂N,n(x)) = O
(

N−
12r

6r+23

)
. (4.13)

Proof. First, lets investigate the integrated variance term

N
∞∫
−∞

var( f̂N,n(x))dx =
∞∫
−∞


∞∫
−∞

δ
2
n (x, t) f (t)dt−

 ∞∫
−∞

δn(x, t) f (t)dt

2
dx (4.14)

it is sufficient to investigate the rate of grows of
∫ ∫

δ 2
n (x, t) f (t)dtdx.

∫
∞

−∞

∫
∞

−∞

δ
2
n (x, t) f (t)dtdx =

∫
∞

−∞

∫
∞

−∞

(
n

∑
k=0

hk(x)hk(t)

)2

f (t)dtdx

≤
∫

∞

−∞

∫
∞

−∞

(
n

∑
k=0

h2
k(x)

n

∑
k=0

h2
k(t)

)
f (t)dtdx

=
∫

∞

−∞

n

∑
k=0

h2
k(x)dx

∫
∞

−∞

n

∑
k=0

h2
k(t) f (t)dt

≤
∫

∞

−∞

n

∑
k=0

h2
k(x)dx

n

∑
k=0

1

(k+1)
1
12

∫
∞

−∞

hk(t) f (t)dt

(4.15)

From Lemma 1, it can be deduced that

|ak| ≤
c

(2k+2)r/2 , k = 0,1,2, ... (4.16)

Since ∫
∞

−∞

e−x2
H2

k (x)dx =
√

π2nn! (4.17)

and using above bound, an order for the integrated variance term can be obtained as

∫
∞

−∞

var
(

f̂N,n(x)
)

dx = O

(
n

23−6r
12

N

)
(4.18)
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Now, the squared bias term can be written as

Bias2
(

f̂N,n(x)
)
=


∞∫
−∞

δn(x, t) f (t)dt− f (x)


2

=


∞∫
−∞

n

∑
k=0

hk(x)hk(t) f (t)dt−
∞

∑
k=0

akhk(x)


2

=

{
∞

∑
k=n+1

akhk(x)

}2

(4.19)

since Hermite functions are orthonormal in L2, then the integrated squared bias is

written as follows
∞∫
−∞

Bias2
(

f̂N,n(x)
)
=

∞

∑
k=n+1

a2
k (4.20)

In order to find a bound for integrated squared bias, the inequality a2
k ≤ k−rb2

k+r is used

which is derived in paper [7] under the condition (x−d/dx)r f (x). Where bk is the kth

coefficients of the expansion of
(
x− d

dx

)r
f in the Hermite series and the series ∑b2

k

converges. So, by virtue of the result of the paper [7],
∞∫
−∞

Bias2
(

f̂N,n(x)
)
=

∞

∑
k=n+1

a2
k = O(n−r). (4.21)

Since MISE can be expressed as the sum of integrated squared bias and integrated

variance, by combining (4.18) and (4.21)

MISE( f̂N,n(x)) = O
(

N
−12r

6r+23

)
. (4.22)

Remark 1. Hermite series method was used in [6] and [7] and the convergency rate

of MISE of the density estimator was obtained as O
(

N−
(r−1)

r

)
in paper [6] and for the

estimate of the pth derivative and assuming that the density has r derivatives where

0 ≤ p < r, the MISE rate obtained as O
(

N−
6(r−p)−5

6r

)
in paper [7]. Note that, for

comparison reasons take p = 0 for the proposed estimator and also for the estimator

used in paper [6]. The hypothesis are the same but faster result are obtained using

delta sequence method.

Remark 2. For r > 2, the rate of convergency of MISE is better than O
(

N−
2(r−p)
2r+1

)
which was obtained in paper [8].
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4.2 Convergency Rate of MSE and MISE of Estimators for Densities Having

Compact Support

In this section, the rate of convergence of MSE and MISE of an estimator of densities

having compact support and based on Hermite functions are investigated. Since the

density function has compact support then the hypothesis weaken a little.

Theorem 3. Let f have compact support and suppose
( d

dx

) j
f ∈ L2 for j = 1,2, ...,r;

then the MSE of the estimate (4.9) satisfies

MSE( f̂N,n(x)) = O(N−
2r+1
2r+2 ) (4.23)

Proof. First, lets obtain bound for delta sequence by using (4.6)

|δn(x, t)|=

∣∣∣∣∣ n

∑
k=0

hk(x)hk(t)

∣∣∣∣∣≤ n

∑
k=0
|hk(x)| |hk(t)| ≤

n

∑
k=0

1
(1+ k)1/2 (4.24)

If a convenient integral is used as the upper bound for the (4.24), then

|δn(x, t)|= O
(

n1/2
)

(4.25)

For the variance term, since
∫

δm(x, t) f (t)dt≤‖ f‖
∞

Var( f̂N,n(x))≤
1
N

∫
δ

2
n (x, t) f (t)dt ≤ c4

N
sup |δn(x, t)| ≤ c5

n1/2

N
. (4.26)

The bias term can be written as

bias2( f̂N,n(x)) =
(∫

δn(x, t) f (t)dt− f (x)
)2

=

(∫ n

∑
k=0

hk(x)hk(t) f (t)dt−
∞

∑
k=0

akhk(x)

)2

=

(
∞

∑
k=n+1

akhk(x)

)2

≤

(
∞

∑
k=n+1

bk+r
1

(2k)
r
2

1

(k+1)
1
4

)2

≤

(
∞

∑
k=n+1

bk+rk
−2r−1

4

)2

≤

(
(n+1)−

2r+1
4

∞

∑
k=n+1+r

bk

)2

(4.27)

Note that, since f has compact support and Dr f ∈ L2, xpDs f ∈ L2 for all integers p≥ 0

and 0 ≤ s ≤ r. So, it follows that (x−D)r f ∈ L2. Then, the bounds for
∣∣a2

k

∣∣ obtained

by Walter (1977) can be used to obtain an order for the squared bias term

bias2( f̂N,n(x)) = O(n−
2r+1

2 ). (4.28)
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So, MSE is

MSE( f̂N,n(x)) = O

(
n

1
2

N
+

1

n
2r+1

2

)
. (4.29)

If n = N
1

r+1 is chosen, then the MSE rate of estimator based on Hermite functions is

obtained as below

MSE( f̂N,n(x)) = O(N−
2r+1
2r+2 ) (4.30)

Theorem 4. Let f have compact support and suppose
( d

dx

) j
f ∈ L2 for j = 1,2, ...,r;

then the MISE of the estimate (4.9) satisfies

MISE( f̂N,n(x)) = O(N−
2r+1
2r+2 ). (4.31)

Proof. The proof is similar to earlier one. Notice that the bounds of delta sequence in

(4.25) is used for the integrated variance term.

Remark 3. The rates obtained in this study are better than those reported by [7] for

the densities having compact support. Moreover, the rates of convergence obtained in

this work is also better than those suggested by [9] who used delta sequence method

to obtain rate of convergence of estimator based on Jakobi polynomials. In paper [9],

it is reported that, the convergency rate of MISE and MSE as O
(

N−
1
3

)
. They are

considerably slower than the rates obtained in this study. However, in paper [9], the

negativity problem of orthogonal series estimators based on Jakobi polynomials was

solved by using certain summability methods. In this thesis, the negativity problem of

Hermite series estimators could not be solved, so it is assumed that density estimate at

x is the max
[
0, f̂N,n(x)

]
to avoid the negative values of the estimator. So, the problem

of obtaining a nonnegative orthogonal series estimator based on Hermite functions

may be a future study.
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5. BETA PRIME DENSITY ESTIMATOR

It is generally thought that, the bandwidth choice is more crucial than the kernel

function in density estimation problem. However, when the density function has

closed or semi infinite support, then classical symmetric kernel estimator has edge

effect (or boundary bias problem) since it causes the leakage of probability mass. In

this chapter, to avoid the edge effect problem, a new asymmetric kernel estimator is

established to estimate the densities having support on [0,∞). Beta prime distribution

function is used as a kernel instead of classical symmetric kernels. It is shown that,

beta prime kernel estimator is free of boundary bias problem. Also, similar to existing

asymmetric kernel estimators, the variance of the beta prime kernel estimator reduces

as the position, where the smoothing is made, moves away from the boundary. Then,

the expressions for the bandwidths that minimize the asymptotic approximation for the

MSE and MISE are obtained. Furthermore, simulation studies are conducted to show

the superior performance of the beta prime estimator over some existing asymmetric

kernel estimators in terms of average ISE. For bandwidth selection problem, adaptive

Bayesian with Lindley approximation method is proposed. Lindley approximation

method have not been used before for the asymmetric kernel estimators. To show the

efficiency of this method, a comparison is made between bandwidths obtained from

adaptive Bayesian with Lindley approximation method and bandwidths obtained from

global LSCV method by using simulation studies. Moreover, real data applications are

made to demonstrate the usefulness of the beta prime estimator and new bandwidth

selection method.

5.1 Beta Prime Kernel Estimator

Let Xi, i = 1,2, ...,n be a random sample from a distribution with an unknown pdf f

having support on the positive real line. Lets assume

i. f is twice continuously differentiable,
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ii.
∫

∞

0 (1+ x)−
1
2 f (x)dx < ∞

iii.
∫

∞

0

{
f
′
(x)
}2

dx < ∞,
∫

∞

0

{
(1+ x) f

′′
(x)
}2

dx < ∞ .

These assumptions are necessary for the Taylor expansion and finiteness of the

integrated bias and integrated variance.

Let KB(λ ,µ) be the density of a Betaprime(λ ,µ) distributed random variable Y defined

as:

KB(λ ,µ)(y) =
yλ−1(1+ y)−λ−µ

β (λ ,µ)
, y > 0, λ > 0, µ > 0. (5.1)

The mean and variance of Y are equal to

E(Y ) =
λ

µ−1
, µ > 1, Var(Y ) =

λ (λ +µ−1)

(µ−1)2 (µ−2)
, µ > 2. (5.2)

The beta prime kernel can be written as

K
B( x2

b +x+1, x
b+

1
x+b+1)

(y) =
y

x2
b +x(1+ y)−(

x2
b +x+ x

b+
1

x+b+2)

β (x2

b + x+1, x
b +

1
x+b +1)

, y > 0 (5.3)

where β is the beta function, b is a smoothing parameter satisfying the condition that

b→ 0 and nb→ ∞ as n→ ∞, and x is the point where the density is estimated. So, the

beta prime kernel estimator defined as, for x ∈ [0,∞),

f̂ (x) =
1
n

n

∑
i=1

K
B( x2

b +x+1, x
b+

1
x+b+1)

(Xi). (5.4)

It is similar to standard kernel estimator, only replaces fixed kernel with beta prime

kernel. Figure 5.1 demonstrates the kernel shapes of IG, RIG, Gam2 and beta prime

depend on the value of x and smoothing parameter b. The amount of smoothing applied

by the illustrated kernel estimators are controlled by the chosen parameters. Note that,

the choice of parametrization is not unique.

The two Gamma kernel estimators denoted by Gam1 and Gam2 of [19],the IG and RIG

kernel estimators of [21] and Birnbaum Saunders-power-exponential (BS-PE) kernel

estimator of [29] are listed below for the comparison purpose:

f̂Gam1(x) =
1
n

n

∑
i=1

(Xi)
x/b e−

Xi
b

bx/b+1Γ(x/b+1)
(5.5)
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Figure 5.1 : Shapes of the kernel functions for different x values and b=0.2.

f̂Gam2(x) =
1
n

n

∑
i=1

(Xi)
ρb(x)−1 e−

Xi
b

bρb(x)Γ(ρb (x))
, (5.6)

where

ρb =

{
x
b , if x≥ 2b
1
4

( x
b

)2
+1, if x ∈ [0,2b)

and

f̂IG(x) =
1
n

n

∑
i=1

b−
1
2(

2πX3
i
)1/2 exp

{
− 1

2bx

(
Xi

x
−2+

x
Xi

)}
(5.7)

f̂RIG(x) =
1
n

n

∑
i=1

b−
1
2

(2πXi)
1/2 exp

{
−x−b

2b

(
Xi

x−b
−2+

x−b
Xi

)}
. (5.8)

f̂BS−PE(x)=
1
n

n

∑
i=1

v
21/2vΓ

( 1
2v

)√
4hi

(
1√
xXi

+

√
x

X3
i

)
exp
(
− 1

2hv
i

(
Xi

x
+

x
Xi
−2
)v)

, x> 0.

(5.9)

Now, lets investigate the integrated squared bias and integrated variance terms to obtain

the MISE of the beta prime estimator.

Proposition 1. The bias of the estimator is

Bias
(

f̂ (x)
)
= b

[
f
′
(x)+

(1+ x)
2

f
′′
(x)
]
+o(b), (5.10)

where b satisfies the condition that b→ 0 and nb→ ∞ as n→ ∞.

Proof. To prove the bias of the estimator, note that

E
{

f̂ (x)
}
=
∫

∞

0
K

B( x2
b +x+1, x

b+
1

x+b+1)
(y) f (y)dy = E { f (ξx)} (5.11)
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here ξx is the Betaprime(x2

b + x+1, x
b +

1
x+b +1) random variable.

By standard moments properties of beta prime distribution,

E (ξx) = x+ xb+O
(
b2) , Var (ξx) = b(x2 + x)+O

(
b2) . (5.12)

From Taylor expansion and equation (5.12), it can be obtained as

E
(

f̂ (ξx)
)
= f (x)+ f

′
(x)E [ f (ξx)− x]+

f
′′
(x)
2

E [ f (ξx)− x]2 + ...

= f (x)+b f
′
(x)+b(1+ x)

f
′′
(x)
2

+o(b).

(5.13)

Then, the bias of the beta prime estimator is

Bias
{

f̂ (x)
}
= b

(
f
′
(x)+(1+ x)

f
′′
(x)
2

)
+o(b). (5.14)

Since the bias is O(b) near the origin as well as in the interior, the beta prime estimator

is free of boundary bias.

Proposition 2. (Variance) The variance of beta prime estimator is

Var
{

f̂ (x)
}
=

1
2
√

π
b−

1
2 n−1(1+ x)−

1
2 f (x)+o(b−

1
2 n−1). (5.15)

Proof.

Var
{

f̂ (x)
}
=

1
n

Var
{

K
B( x2

b +x+1, x
b+

1
x+b+1)

(Xi)

}
=

1
n

[
E
(

K
B( x2

b +x+1, x
b+

1
x+b+1)

(Xi)

)2
]
+O(

1
n
)

(5.16)

and by multiplying both numerator and denominator by β (2x2

b +2x+1, 2x
b + 2

x+b +2),

it is obtained that

E
(

K
B( x2

b +x+1, x
b+

1
x+b+1)

(Xi)

)2

=
∫

∞

0

y
x2
b +x(1+ y)−(

x2
b +x+ x

b+
1

x+b+2)

β (x2

b + x+1, x
b +

1
x+b +1)

2

f (y)dy

= Ab

∫
∞

0

y
2x2

b +2x(1+ y)−(
2x2

b +2x+ 2x
b + 2

x+b+3)

β (2x2

b +2x+1, 2x
b + 2

x+b +2)

f (y)
(y+1)

dy

= AbE
[
(1+ξx)

−1 f (ξx)
]

(5.17)

where

Ab =
β (2x2

b +2x+1, 2x
b + 2

x+b +2)

β 2(x2

b + x+1, x
b +

1
x+b +1)

, (5.18)
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β is the beta function and ξx is a Betaprime
(

2x2

b +2x+1, 2x
b + 2

x+b +2
)

distributed

random variable.

By using Stirling formula Γ(z+ 1) =
√

2π exp(−z)zz+ 1
2/R(z), where R(z) converges

to 1 as z→ ∞ and R(z)< 1 for any z > 0, an order for the equation (5.18) can be

Ab ≈
1

2
√

π
b−1/2 (x+1)

1
2 . (5.19)

Then, applying Taylor expansion again,

E
[
(1+ξx)

−1 f (ξx)
]
= (1+ x)−1 f (x)+o(b). (5.20)

Therefore, variance term is

Var
{

f̂ (x)
}
=

1
2
√

π
b−

1
2 n−1(1+ x)−

1
2 f (x)+o(b−

1
2 n−1). (5.21)

Since MSE is the sum of squared bias and variance of the estimator, by combining

equations (5.14) and (5.21), MSE is obtained as

MSE
(

f̂ (x)
)
= b2

(
f
′
(x)+(1+ x)

f
′′
(x)
2

)2

+
1

2
√

π
b−

1
2 n−1(1+x)−

1
2 f (x)+o(b2+b−

1
2 n−1)

(5.22)

Then, the optimal bandwidth that minimizes the MSE is

b∗MSE =

(
1

8
√

π

(1+ x)−
1
2 f (x)(

f ′(x)+ 1
2(1+ x) f ′′(x)

)2

) 2
5

n−
2
5 (5.23)

So, the corresponding optimal MSE is

MSE( f̂ (x))∗ =
5(

8
√

π
) 4

5

{
(1+ x)−

1
2 f (x)

} 4
5
{

f ′(x)+
1
2
(1+ x) f ′′(x)

} 2
5

n−
4
5 (5.24)

Similarly, the optimal MISE based on

b∗MISE =

 1
4
√

π

∫
∞

0 (1+ x)−
1
2 f (x)dx

2
∫

∞

0

[
f ′(x)+ (1+x)

2 f ′′(x)
]2

dx


2
5

n−
2
5 . (5.25)

is

MISE∗
{

f̂ (x)
}
=

5
28/5

[
1

2
√

π

∫
∞

0
(1+ x)−

1
2 f (x)dx

]4/5

[∫
∞

0

[
( f
′
(x)+

(1+ x)
2

f
′′
(x)
]2

dx

]1/5

n−4/5.

(5.26)
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The optimal bandwidths (5.23) and (5.25) obtained for MSE and MISE depend

on the unknown density function f . For this reason, global automatic bandwidth

selection methods like LSCV, LCV are available in the literature. However, for some

distribution functions this global methods give rise to unsatisfactory results. Therefore,

adaptive Bayesian bandwidth selection method is proposed as an alternative way to this

methods. For small sample sizes, adaptive Bayesian approach has good smoothing

quality. That’s why, there has been a considerable interest in this approach, recently

(see [28]; [29]; [40]).

5.2 Adaptive Bayesian Bandwidth Selection Method Using Lindley’s Approxima-

tion

Following the papers [28] and [40], the adaptive asymmetric kernel estimator of f is

given by

f̂ (x) =
1
n

n

∑
i=1

Kx,hi (Xi) (5.27)

where Kx,hi is the adaptive asymmetric kernel and hi is the variable bandwidth

associated with each observation xi. Therefore, f (xi) can be estimated by the adaptive

asymmetric associated kernel estimator based on all points except xi. So, the leave one

out estimator is given by the formula

f̂−i(xi) = f̂ (xi|{x−i} ,hi) =
1

n−1

n

∑
j=1,i6= j

Kxi,hi

(
X j
)

(5.28)

where {x−i} is the set of observations excluding xi. Let π(hi) be the prior distribution

of hi, then the posterior of each variable bandwidth hi takes the form

π(hi|xi) =
f̂ (xi|{x−i} ,hi)π(hi)∫

f̂ (xi|{x−i} ,hi)π(hi)dhi
. (5.29)

Under squared error (SE) loss functions, the Bayes estimates of hi is of the form

ĥi =
∫

hiπ(hi|xi)dhi. (5.30)

Usually, these expression cannot be obtained in a simple closed form. Alternatively,

Lindley’s approximation (see [41]) method for the computation of these equations can

be used. Lindley’s approximation is a method to obtain Taylor series expansion of the

function involved in posterior moment,

E {u(h)|x}=
∫

u(h)v(h)exp(L(h))dh∫
v(h)exp(L(h))dh

(5.31)
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where u(h) and v(h) are arbitrary functions of h and L(h) is the log-likelihood function.

For a single parameter case,

E {h|x}= h+ρ

(
− 1

L2

)
+

1
2

(
− 1

L2

)2

L3 +O
(

1
n2

)
. (5.32)

where ρ is derivative of the logarithm of prior function with respect to h, L2 and L3 are

second and third derivative of log-likelihood function of h, respectively.

Now, lets define the beta prime kernel estimator with variable bandwidth hi and

the approximate Bayes estimates of hi under the SE loss function. The conditional

distribution of xi excluding the observation xi and the beta prime kernel with variable

bandwidth hi are given respectively by

f̂ (xi|{x−i} ,hi) =
1

n−1

n

∑
j=1,i6= j

Kxi,hi

(
X j
)

(5.33)

and

Kxi,hi(X j) =

(
X j
) x2

i
hi
+xi (1+X j)

−( x2
i

hi
+xi+

xi
hi
+ 1

xi+hi
+2)

B(x2
i

hi
+ xi +1, xi

hi
+ 1

xi+hi
+1)

(5.34)

where β is Beta function. Therefore, the approximate Bayes estimates of hi under the

SE loss functions is obtained as

ĥL
i = hi +ρ

(
− 1

L∗2

)
+

1
2

(
− 1

L∗2

)2

L∗3 |
hi=h̃i

(5.35)

where h̃i is the posterior mode obtained from the equationQ = log( f̂−i(xi)) +

log(π(hi)) by equating ∂Q
∂hi

to zero. L∗2 and L∗3 are the second and third derivative

of log( f̂−i(xi)) with respect to hi, respectively. Note that, the closed form of the L∗2, L∗3

cannot be obtained in a simple form so it is not listed here.

5.3 Simulation Results

In this section, by using different underlying distribution functions, the finite sample

performance of the two gamma kernels, IG and RIG kernel estimators are compared

with the beta prime kernel estimator in terms of average ISE’s of the estimators.

Then, to show the effectiveness of the adaptive Bayesian bandwidth selection method

with Lindley’s approximation, the performance of the bandwidths obtained from

this method and the bandwidths obtained from global LSCV method are compared

through Monte Carlo simulation studies. All simulation studies are performed using R

statistical software.
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5.3.1 Simulation studies to compare the average ISE performance of the

estimators

The two gamma kernel estimators, IG and RIG kernel estimators and beta prime

kernel estimator are considered to investigate their finite sample properties in terms

of the average ISE. Data sets are generated from various distributions (see Figure 5.2)

described in A-E given below. Some of these distributions have been also studied

in [21] and [27].

A. Beta prime density: f (x) = x(α−1)

(1+x)(α+λ )β (α,λ )
, with parameters (α,λ ) = (2,1).

B. Weibull density: f (x) = αx(α−1)e−(x/λ )α

λ α , with parameters (α,λ ) = (3,1).

C. Gamma density: f (x) = x(µ−1)e−(x/λ )

λ µ Γ(µ) , with parameters (µ,λ ) = (1,3) .

D. Mixture Gamma density: f (x) = 0.5 x(µ1−1)e
− x

λ1
λ1

µ1Γ(µ1)
+ 0.5 x(µ2−1)e

− x
λ2

λ
µ2
2 Γ(µ2)

, with parameters

(µ1,λ1) = (1,3),(µ2,λ2) = (2,3).

E. Mixture Weibull density: f (x) = 0.5 µ1x(µ1−1)e
−
(

x
λ1

)µ1

λ
µ1
1

+ 0.5 µ2x(µ2−1)e
−
(

x
λ2

)µ2

λ
µ2
2

, with

parameters (µ1,λ1) = (3,1),(µ2,λ2) = (5,3).
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Figure 5.2 : Density plots of the cases A-E.

1500 replications of sample size n=50, 100, 200 and 500 are generated for each density

defined in cases A-E. Numerical integrations are done by using Gauss Legendre

quadrature with 96 knots. The performance of the estimators are compared in terms of

the ISE criterion which is defined by

ISE =
∫ a

0

{
f̂ (x)− f (x)

}2
dx. (5.36)

where a is chosen for each underlying distribution in such a way that the densities

having virtually zero values outside of [0,a]. For each replication, the ISE of each
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competitive kernel estimators are calculated from a grid of bandwidth values such that

the end points of the sequence of b are chosen in such a way that no minimum ISE

is achieved at the end point. For example, the sequence for b starts from 0.001 with

increment 0.001 up to 2 for IG, Gam1 and Gam2 kernels and it starts from 2 with

increment 0.001 up to 4 for RIG and beta prime kernels for the case A in Table 5.1.

Then, the minimum average ISE and corresponding smoothing parameter b for each

kernel estimator are reported in Table 5.1. For the other cases similar idea is followed.

The sequence for b created with this procedure covers the sequence used in [21]. From

Table 5.1, one can see that, the average ISEs of all estimators decrease as the sample

size n increases. Beta prime kernel estimator outperforms others except for the case D.

In this case, the differences are almost negligible and it may be due to the small sample

size. The IG kernel estimator is dominated by others in all cases. As explained in [21],

when the shape parameter of Gamma distribution is less than 1.5, then MISERIG and

MISEIG are not well defined. That is why, in case C, RIG and IG kernel estimators

do not perform well. However, for this case beta prime kernel estimator yields the

smallest average ISE. Figure (5.3) illustrates the pointwise bias, variance and MSE of
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Figure 5.3 : Bias, Variance and MSE comparison of kernel estimators.

RIG, Gam2 and beta prime kernel for x ∈ [0,2] , for the Weibull(3,1) density when the

sample size is 200. As stated in [19], Gam2 kernel has better global performance due

to the smaller MISE so only Gam2 kernel is used in the comparison. When x > 1.5, the

beta prime estimator has smaller MSE compared with other estimators. On the other

hand, there are no clear comparison among estimates for x < 1.5. Also, from Figure
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Table 5.1 : Average ISE of different kernel estimators.

n IG RIG Gam1 Gam2 Beta Prime
A 50 0.0098 0.0017 0.0015 0.0043 0.0009

(0.006) (3.6) (1.05) (0.32) (3.58)
100 0.0058 0.0011 0.0009 0.0030 0.0005

(0.006) (3.59) (0.87) (0.24) (3.1)
200 0.0031 0.0008 0.0005 0.0016 0.0003

(0.005) (3.58) (0.69) (0.18) (2.67)
500 0.0014 0.0006 0.0003 0.0008 0.0001

(0.004) (3.58) (0.51) (0.13) (2.29)
B 50 0.0575 0.0282 0.0301 0.0278 0.0261

(0.034) (0.036) (0.033) (0.037) (0.018)
100 0.0352 0.0172 0.0181 0.0170 0.0159

(0.023) (0.026) (0.024) (0.027) (0.013)
200 0.0218 0.0107 0.0110 0.0106 0.0098

(0.016) (0.019) (0.018) (0.020) (0.009)
500 0.0108 0.0054 0.0057 0.0054 0.0050

(0.011) (0.013) (0.012) (0.013) (0.006)
C 50 0.3073 0.0177 0.0057 0.0060 0.0056

(0.167) (0.185) (0.481) (0.747) (0.594)
100 0.2163 0.0114 0.0035 0.0037 0.0033

(0.132) (0.116) (0.360) (0.582) (0.422)
200 0.1257 0.0074 0.0022 0.0023 0.0020

(0.089) (0.064) (0.271) (0.439) (0.298)
500 0.0543 0.0040 0.0011 0.0012 0.0010

(0.055) (0.028) (0.179) (0.289) (0.189)
D 50 0.0877 0.0087 0.0031 0.0031 0.0035

(0.07) (0.284) (0.796) (1.211) (0.888)
100 0.1092 0.0057 0.0018 0.0018 0.0019

(0.094) (0.198) (0.642) (1.089) (0.705)
200 0.0834 0.0037 0.0011 0.0012 0.0011

(0.064) (0.128) (0.507) (0.944) (0.543)
500 0.0343 0.0021 0.0006 0.0008 0.0005

(0.036) (0.069) (0.365) (0.648) (0.368)
E 50 0.0319 0.0160 0.0169 0.0159 0.0158

(0.039) (0.048) (0.046) (0.050) (0.027)
100 0.0198 0.0095 0.0097 0.0094 0.0092

(0.021) (0.035) (0.034) (0.036) (0.019)
200 0.0142 0.0059 0.0062 0.0059 0.0054

(0.014) (0.029) (0.027) (0.029) (0.016)
500 0.0066 0.0030 0.0031 0.0030 0.0029

(0.009) (0.018) (0.017) (0.018) (0.009)
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(5.3), one can see that the variance of the estimators reduces as one moves away from

the boundary as oppose to bias terms, this is considered as an advantage if estimated

density has sparse areas.

5.3.2 Comparison of adaptive Bayesian analysis using Lindley’s approximation

with LSCV method

In this subsection, for the purpose of showing the usefulness of the Lindley’s

approximation for the heavy tailed distribution, a comparison is made between average

ISE’s of beta prime estimator obtained from adaptive Bayesian method using Lindley’s

approximation and average ISE’s of beta prime estimator obtained from global LSCV

method. In the paper [29], the Bayesian adaptive approach under quadratic loss

function based on BS-PE kernel estimator is studied, then exact expression for the

variable bandwidths hi is obtained. Therefore, the average ISE’s of beta prime

estimator obtained from adaptive Bayesian method using Lindley’s approximation and

LSCV method is also compared with the average ISE’s of the BS-PE kernel estimator

obtained from the Bayesian adaptive approach under quadratic loss function.

As a prior density function of bandwidth hi, beta prime distribution is chosen with

parameters λ and µ:

π(hi) =
(hi)

λ−1

(1+hi)
λ+µ

1
β (λ ,µ)

, λ > 0, µ > 2, (5.37)

where mean and variance of the prior are

E(hi) =
λ

µ−1
, µ > 1; Var(hi) =

λ (λ +µ−1)

(µ−1)2 (µ−2)
, µ > 2 (5.38)

Note that, the prior selection and its parametrization are not unique for the Lindley’s

approximation method. By following the idea of [42] and [29], the prior parameters

are chosen as λ = 1 and µ = n4/5, since E (hi)> 0 for λ > 0 and µ > 1 , Var (hi)> 0

for λ > 0 and µ > 2, also for large values of µ , prior of hi is concentrated at zero. Note

that in practice, µ = n4/5 may not be satisfactory for the smoothing quality.

For comparison purpose of findings with those of [29], the data is simulated from

heavy tailed distributions which are Burr, lognormal, mixture of gamma and Levy

distributions. For each density, 1500 replications of sample size 25, 50, 100 and 200

are generated and the results are given in Table 5.2.
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Table 5.2 : Comparison of average ISE’s of adaptive Bayesian and LSCV methods.

n LSCV_BPR Lindley_BPR Quadratic_BS-PE
A 25 0.0128 0.0106 0.0161

50 0.0072 0.0061 0.0096
100 0.0042 0.0036 0.0058
200 0.0027 0.0021 0.0034

B 25 0.0598 0.0277 0.0329
50 0.0339 0.0183 0.0214

100 0.0140 0.0111 0.0127
200 0.0085 0.0071 0.0079

C 25 0.0111 0.0089 0.0113
50 0.0091 0.0054 0.0068

100 0.0047 0.0034 0.0041
200 0.0018 0.0015 0.0025

D 25 0.0771 0.0272 0.0328
50 0.0594 0.0237 0.0272

100 0.0577 0.0215 0.0231
200 0.0517 0.0197 0.0206

A. Lognormal density: f (x) = 1
xλ
√

2π
exp
(
− 1

2λ 2 (lnx−µ)2
)

with parameters(µ,λ ) =

(1,1).

B. Burr density: f (x) = µxµ−1

(1+λxµ )λ+1 with parameters (µ,λ ) = (3,1).

C. Mixture of Gamma density: f (x) = 0.5 xµ1−1 exp(−x)
Γ(µ1)

+ 0.5 xµ2−1 exp(−x)
Γ(µ2)

with parame-

ters (µ1,µ2) = (2.5,10).

D. Levy density: f (x) =
√

λ

2π

1

(x−µ)
3
2

exp
(
− λ

2(x−µ)

)
, x > µ, with parameters (µ,λ ) =(

0, 1
2

)
.

Table 5.2 illustrates that, adaptive Bayesian method with Lindley approximation

dominates BS-PE adaptive kernel estimator used in [29], despite the fact that they use

exact values of bandwidth hi for heavy tailed distribution function. The bandwidths

obtained from adaptive Bayesian with Lindley approximation method yields smaller

average ISE than the bandwidths obtained from global LSCV method. Moreover,

Lindley approximation method is suitable for selection of different priors. On the

other hand, for the light tailed distributions, Lindley approximation with beta prime

prior do not perform well, but choosing different prior one can obtain good results. For

example, inverse gamma prior leads a better average ISE for Gam(1,3) distribution.
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5.4 Real Data Applications

Two data sets studied to illustrate the performance of the beta prime, Gam2 and RIG

kernel estimators. Since IG kernel estimator is not suitable for the data sets, it is not

displayed in the figures. The first data set is the daily ozone level measurements in New

York, May to September, 1973 and it consists of 116 observations This data set have

been studied earlier in the paper [43]. The second data set is about snowfall collected

for Grand Rapids, MI, going back to 1893. In this thesis, only the data collected in

December is used. This data set consists of 119 observations of the inches of snow. It

is available at http://www.crh.noaa.gov/grr/climate/data/grr/snowfall/. For the second

graphics, in Figure (5.4) and Figure (5.5), optimal global bandwidths are obtained by

minimizing the LSCV criterion for the kernel estimators. Beta prime kernel estimator

captures modes and bumps of the models and it can be considered satisfactory for this

kind of data sets. Beta prime, Gam2 and RIG estimators shows similar performance for

the data sets. For the last graphics in Figure (5.4) and Figure (5.5), bandwidths obtained

by using adaptive Bayesian with Lindley approximation method. Prior distribution

with parameters λ = 1 and µ = n1/5 is used for ozone data and snowfall data. In those

graphics, the solid line represents the beta prime estimator with bandwidth selected

by the adaptive Bayesian method using Lindley approximation and the dashed line

represents the beta prime estimator with bandwidth selected by the LSCV method. It

can be seen that both adaptive Bayesian and LSCV method successfully captures the

bumps and unimodality of the models.
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Figure 5.4 : Density estimates for ozone data.

Figure 5.5 : Density estimates for snow data.
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6. SCALED INVERSE CHI-SQUARED KERNEL ESTIMATOR

In this chapter, the scaled inverse chi-squared kernel estimator is proposed as an new

kernel estimator for a density with support [0,∞) and therefore, the class of asymmetric

kernel estimators is extended. Scaled inverse chi-squared distributions are closely

related to the inverse chi-squared distribution and the inverse gamma distribution.

Also, it can be used as a conjugate prior for the variance parameter of a normal

distribution in Bayesian statistics. It is showed that, scaled inverse chi-squared kernel

estimator is free of boundary bias, has flexible shape, always nonnegative and achieve

the optimal rate of convergence for the MSE and MISE similar to the other asymmetric

kernel density estimators. For the selection of bandwidths, the adaptive Bayesian

bandwidth selection method with Lindley approximation is used for the proposed

estimator. Then, numerical studies are conducted to compare the performance

of bandwidths obtained from global LSCV method with the bandwidths obtained

from adaptive Bayesian bandwidth selection method with Lindley approximation.

Furthermore, real data applications illustrate that it is suitable to use this proposed

estimator when the estimated density has a shoulder near zero and it captures the bumps

and unimodality of the models. Note that, neither beta prime kernel estimator nor

BS-PE kernel estimator is appropriate for shoulder data. Therefore, scaled inverse chi-

squared kernel estimator can be used as an alternative to beta prime kernel estimator

for this kind of data.

6.1 Scaled Inverse Chi-Squared Estimator

Let X1,X2, ...,Xn be an i.i.d. random sample from a distribution with an unknown

probability density function f defined on the positive real line.

The following assumptions are made for the Taylor expansion and the finiteness of

integrated squared bias and integrated variance terms.

i. f is twice differentiable
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ii.
∫

∞

0 x−
1
2 f (x)dx < ∞

iii.
∫

∞

0 f ′(x)2dx < ∞ and
∫

∞

0 (x f ′′(x))2 dx < ∞.

Scaled inverse chi- squared distribution is denoted by SI_χ−2(ν ,τ2) with parameters

ν , τ2. Let KSI_χ−2(ν ,τ2) be the density of a SI_χ−2(ν ,τ2) distributed random variable

Y , it is defined as:

KSI_χ−2(ν ,τ2)(y) =

(
τ2ν/2

)ν/2

Γ(ν/2)

exp
(
−ντ2

2y

)
y1+ ν

2
, y > 0. (6.1)

Then, the mean and variance of Y are

E(Y ) =
ντ2

(ν−2)
, ν > 2, Var(Y ) =

2ν2τ4

(ν−2)2 (ν−4)
, ν > 4. (6.2)

So, the scaled inverse chi- squared kernel estimator considered in this thesis can be

defined as

f̂ (x) =
1
n

n

∑
i=1

K
SI_χ−2( x

b+5, (x+b)(x+3b)
(x+5b) )

(Xi), (6.3)

where b is smoothing bandwidth satisfying the condition b→ 0 and nb→∞ as n→∞,

and x ∈ [0,∞) is the point where the density is estimated.

Proposition 3. (Bias) The bias of the proposed kernel estimate is equal to

Bias
(

f̂ (x)
)
= b

[
f ′(x)+ x f ′′(x)

]
+o(b). (6.4)

where b satisfies the condition that b→ 0 and nb→ ∞ as n→ ∞.

Proof. As in previous section E
(

f̂ (x)
)

can be written as

E
(

f̂ (x)
)
=
∫

∞

0
K

SI_χ−2( x
b+5, (x+b)(x+3b)

(x+5b) )
(y) f (y)dy = E ( f (ξx)) (6.5)

where ξx is the SI_χ−2( x
b +5, (x+b)(x+3b)

(x+5b) ) random variable. By Taylor expansion and

standard properties of scaled inverse chi-squared distribution

E ( f (ξx)) = f (x)+b f ′(x)+2bx
f ′′(x)

2
+o(b). (6.6)

Then, the bias term is

Bias
(

f̂ (x)
)
= b

[
f ′(x)+ x f ′′(x)

]
+o(b). (6.7)
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Proposition 4. (Variance) The variance of the proposed kernel estimate is equal to

Var
(

f̂ (x)
)
=

1

2
3
2
√

π
b−

1
2 x−

1
2 n−1 f (x)+o(b−

1
2 n−1). (6.8)

Proof. The variance term for the scaled inverse chi squared estimator can be written

as

Var
(

f̂ (x)
)
=

1
n

Var
(

K
SI_χ−2( x

b+5, (x+b)(x+3b)
(x+5b) )

(Xi)

)
=

1
n

E
(

K
SI_χ−2( x

b+5, (x+b)(x+3b)
(x+5b) )

(Xi)

)2

+O
(

1
n

) (6.9)

and

E
(

K
SI_χ−2( x

b+5, (x+b)(x+3b)
(x+5b) )

(Xi)

)2

=
∫

∞

0

(
(x+b)(x+3b)

(x+5b) )
( x

b+5)
2

)( x
b+5)

exp(−
ν
(x+b)(x+3b)

(x+5b) )

y )

Γ2
(
( x

b+5)
2

)
y2(1+

( x
b+5)

2 )

f (y)dy

=
Γ
(x+5b

2b

)
Γ
(x+5b

b

)2

(
1
2

) x+5b
2b
∫

∞

0

1
y

K
SI_χ−2(2( x

b+5), (x+b)(x+3b)
(x+5b) )

(y) f (y)dy

= BbE(ξ−1
x f (ξx)).

(6.10)

where ξx is the SI_χ−2
(

2
( x

b +5
)
, (x+b)(x+3b)

(x+5b)

)
distributed random variable and

Bb =
Γ
(x+5b

2b

)
Γ
(x+5b

b

)2

(
1
2

) x+5b
2b

. (6.11)

By using Stirling formula Γ(z) =
√

2π exp(−z)zz− 1
2/R(z), where R(z) converges to 1

as z→ ∞ and R(z)< 1 for any z > 0, it is obtained as

Bb ≈
1

2
3
2
√

π

x1/2

b1/2 . (2.15)

Then, using Taylor expansion, it gives

E(ξ−1
x f (ξx)) = x−1 f (x)+o(b). (6.12)

So,

Var
(

f̂ (x)
)
=

1

2
3
2
√

π

b−
1
2 x−

1
2 n−1 f (x)+o(b−

1
2 n−1). (6.13)
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Then, using bias and variance terms MISE is obtained as

MISE
(

f̂ (x)
)
= b2

∫
∞

0

[
f ′(x)+ x f ′′(x)

]2 dx+
1

2
3
2
√

π

b−
1
2 n−1

∫
∞

0
x−

1
2 f (x)dx+o

(
b2 +b−

1
2 n−1

)
.

(6.14)

The optimal bandwidth minimizing the MISE obtained above is

b∗MISE =

(
1

2
7
2
√

π

n−1 ∫ ∞

0 x−
1
2 f (x)dx∫

∞

0 [ f ′(x)+ x f ′′(x)]2 dx

) 2
5

. (6.15)

Then, the corresponding optimal MISE can be can be obtained as

MISE
(

f̂ (x)
)
=

(
5

π
2
5 2

14
5

)(∫
∞

0
x−

1
2 f (x)dx

) 4
5
(∫

∞

0

[
f ′(x)+ x f ′′(x)

]2 dx
) 1

5

n−
4
5 .

(6.16)

Also, the optimal bandwidth minimizing the MSE is

b∗MSE =

(
1

2
7
2
√

π

x−
1
2 f (x)

[ f ′(x)+ x f ′′(x)]2

) 2
5

n−
2
5 . (6.17)

Then, by using the optimal bandwidth, one can obtain the optimal MSE as

MSE
(

f̂ (x)
)
=

(
5

π
2
5 2

14
5

)(
x−

1
2 f (x)

) 4
5 [

f ′(x)+ x f ′′(x)
] 2

5 n−
4
5 . (6.18)

6.1.1 Simulation study for comparison of MSE’s

1500 replications of sample size n = 500 are generated from Gamma(3,1) distribution

function. The pointwise bias, variance and MSE of Gam2 kernel, BS-PE kernel and

scaled inverse chi-squared kernel estimators are illustrated in Figure (6.1). From Figure

(6.1), it can be seen that the variance of the kernel estimators reduces when one moves

away from zero. When, x > 4 the MSE of scaled inverse chi squared distribution is

better than others. When x < 4, there are no clear comparison among estimators.

6.2 Numerical Studies for Bayesian analysis with Lindley Approximation

In this section, the average ISE’s of the adaptive Bayesian approach using Lindley

approximation method with the classical LSCV bandwidth selection method are

compared. Moreover, we compare the average ISE’s with those of [29] Bayesian

adaptive approach under quadratic loss function based on BS-PE kernel estimator and

beta prime kernel estimator proposed in previous chapter with bandwidths obtained
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Figure 6.1 : MSE comparison of some kernels.

from Bayesian approach using Lindley approximation. The inverse gamma distribution

is chosen as a prior for the variable bandwidth hi,

π(hi) =
β α

Γ(α)
(hi)

−α−1 exp
(
−β

hi

)
. (6.19)

where mean and variance of the prior are

E(hi) =
β

α−1
, α > 1, Var(hi) =

β 2

(α−1)2 (α−2)
, α > 2. (6.20)

The prior parameters are chosen as α = 2.5 and β = 0.1, since E (hi) > 0 for β > 0

and α > 1 , Var (hi) > 0 for β > 0 and α > 2. Note that, in practice, this parameter

values are not necessarily the best choice for obtaining the best smoothing quality.

As in previous chapter, for the densities described below 1000 replications of sample

size 25, 50, 100 are generated and the results are given in Table 6.1.

A. Lognormal density: f (x) = 1
xλ
√

2π
exp
(
− 1

2λ 2 (lnx−µ)2
)

with parameters(µ,λ ) =

(1,1).

B. Burr density: f (x) = µxµ−1

(1+λxµ )λ+1 with parameters (µ,λ ) = (3,1).
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Table 6.1 : Average ISE comparisons of some kernel estimators.

n LSCV_SI_CS Lindley_SI_CS BS-PE Beta Prime
A 25 0.0186 0.0141 0.0163 0.0106

50 0.0093 0.0073 0.0097 0.0061
100 0.0046 0.0040 0.0058 0.0036

B 25 0.0398 0.0326 0.0357 0.0277
50 0.0207 0.0187 0.0214 0.0183

100 0.0149 0.0123 0.0134 0.0111
C 25 0.0135 0.0092 0.0094 0.0089

50 0.0108 0.0057 0.0058 0.0054
100 0.0029 0.0027 0.0036 0.0034

D 25 0.0703 0.0648 0.0675 0.0272
50 0.0674 0.0599 0.0600 0.0237

100 0.0589 0.0554 0.0561 0.0215

C. Mixture of Gamma density: f (x) = 0.5 xµ1−1 exp(−x)
Γ(µ1)

+ 0.5 xµ2−1 exp(−x)
Γ(µ2)

with parame-

ters (µ1,µ2) = (2.5,10).

D. Levy density: f (x) =
√

λ

2π

1

(x−µ)
3
2

exp
(
− λ

2(x−µ)

)
, x > µ, with parameters (µ,λ ) =(

0, 1
2

)
.

Note that, in Table 6.1 LSCV_SI_CS represents the average ISE of scaled inverse chi-

squared kernel estimators with bandwidth obtained from LSCV method, Lindley_SICS

represents the average ISE of scaled inverse chi- squared kernel estimators with

bandwidth obtained from Lindley approximation method, BS-PE represents the

average ISE of BS-PE kernel estimator with bandwidths obtained from Bayesian

adaptive approach under quadratic loss function and Beta Prime represents the

average ISE of beta prime kernel estimators with bandwidth obtained from Lindley

approximation method.

It can be seen from Table 6.1 that the beta prime kernel estimator gives better estimates

in terms of average ISE for heavy tailed distribution functions. As the sample size n

increases, the average ISEs of the estimators decrease as expected. The average ISE of

scaled inverse chi-squared kernel estimator by using adaptive Bayesian method with

Lindley approximation is smaller than BS-PE adaptive kernel estimator used in [29].

The bandwidths obtained by using adaptive Bayesian with Lindley approximation
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method gives smaller average ISE than the bandwidths obtained from global LSCV

method.

6.3 Real Data Applications

In this section, two data sets are studied. The first data set is daily ozone level

measurements studied in the previous chapter. The second data set was collected to

estimate the abundance of Southern Bluefin Tuna in Great Australian Bight (see [44]).

It consists of 64 observations on the perpendicular distance (in miles) of tuna schools

to transect line.

In Figure (6.2), the solid line represents the scaled inverse chi-squared estimator with

bandwidth selected by the adaptive Bayesian method using Lindley approximation and

the dashed line represents the scaled inverse chi-squared estimator with bandwidth

selected by the LSCV method for ozone data. From Figure (6.2) and Figure (6.3), it

can be said that, the scaled inverse chi-squared kernel with the bandwidths obtained

from the two different method successfully captures modes and bumps of the models,

so it can be considered satisfactory for those data sets. In Figure (6.3), panel (a) and

(b) represent the scaled inverse chi-squared kernel estimator and beta prime kernel

estimator, respectively. In those panels, bandwidths obtained from adaptive Bayesian

with Lindley approximation and LSCV methods. For the selection of bandwidths by

using adaptive Bayesian with Lindley approximation method, it is chosen that the prior

for bandwidths follows the inverse gamma distribution with parameter values α = n4/5

and β = 0.1 for the scaled inverse chi-squared kernel estimator and beta prime prior

with parameters α = 1 and β = n1/5 are employed for the beta prime kernel estimator.

Panel (c) represents the BS-PE estimator proposed in paper [29] with bandwidths

obtained from Bayesian adaptive approach under quadratic loss function and LSCV

method. In (c), inverse gamma distribution with parameter values α = 2.5 and β = 1

are used as a prior for the bandwidths obtained from Bayesian adaptive approach.

According to practitioners the tuna data has a shoulder near the x = 0 (see [44]). Panel

(a) showed that, the scaled inverse chi-squared kernel has good performance when f

has a shoulder near zero. On the other hand, the beta prime kernel estimator and BS-PE

kernel estimator are unsuitable for such a data set.
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Figure 6.2 : SI-Chi Squared kernel estimator for ozone data.
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Figure 6.3 : Density estimates for tuna data.
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7. CONCLUSIONS AND RECOMMENDATIONS

In this dissertation the density estimation problem is studied using the delta sequence,

the orthogonal series and the asymmetric kernel methods. First, delta sequence

method is considered. The convergency rate of the MSE of the estimator is obtained

for the densities defined by the second order finite differences. Then, it is shown

that, the convergency rate is faster than the convergency rate of MSE obtained by

using the first order finite differences. Moreover, by writing the conditions on the

density in terms of the second order modulus of continuity type majorants, the general

assumption of second order differentiability is weakened. Secondly, the orthogonal

series method namely Hermite polynomials is considered by using delta sequences. In

this chapter, for the densities which have rth derivatives, the convergency rate of the

MISE of estimators of densities with infinite support by using delta sequences which

are based on the hermite functions is obtained. Then, convergency rate of the MSE

and MISE of the estimator for the densities having compact support is obtained. The

contribution of this work is improving the results of former publications about the rate

of convergence of estimators based on Hermite series. Aforementioned, orthogonal

series density estimate may take on negative values. So, the positivity of the Hermite

series estimators may be a challenging work.

Furthermore, the asymmetric kernel method is studied and the boundary bias problem

are the main interest. A new kernel estimator is proposed by using the asymmetric

beta prime distribution function as kernel. It is shown that, beta prime estimator is free

of boundary bias problem, has variable shape (so its support matches the support of

the density to be estimated) and has the optimal rate of convergence of the MSE and

MISE. Simulation studies indicate that, the beta prime kernel estimator has good finite

sample properties and generally outperforms the kernel estimators proposed before.

Moreover, for the heavy tailed data adaptive Bayesian bandwidth selection method is

used with Lindley approximation. Lindley approximation has not been used before for

the asymmetric kernel estimators. Then, comparisons are made in terms of average
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ISE’s obtained by using adaptive Bayesian Lindley method and obtained by using

LSCV method via simulation studies. The adaptive Bayesian Lindley method exhibits

better results than the LSCV method. Also, the average ISE of beta prime estimators

with bandwidths obtained from adaptive Bayesian Lindley method outperforms the

average ISE of BS-PE estimator despite the fact that it is obtained from the exact

expression for the adaptive bandwidth. Moreover, real data applications illustrate that

beta prime estimators with bandwidths obtained from both adaptive Bayesian Lindley

and LSCV methods have good smoothing quality and captures the modes and bumps

of the models, successfully. So, the proposed model may be useful for the air quality

and hydrological data applications.

Finally, in the last chapter, scaled inverse chi-squared kernel estimator is proposed as

a new asymmetric estimator. Similar to the existing estimators, the proposed kernel

solves the boundary bias problem. For numerical purposes, the MSE comparison

is made with some asymmetric kernel estimators. Moreover, adaptive Bayesian

bandwidth selection method with Lindley approximation is used for the scaled inverse

chi squared kernel estimator. Then, it is shown that, the performance of average ISE

is better when using the bandwidths obtained from the adaptive Bayesian bandwidth

selection method with Lindley approximation method than the bandwidths obtained

from global LSCV method. Real data examples demonstrate that both adaptive

Bayesian method and LSCV has good smoothing quality and capture the modes and

unimodality of the models successfully. Even though the average ISE performance

of the scaled inverse chi-squared estimator is not as good as the beta prime kernel

estimator, Tuna data example illustrates that the scaled inverse chi-squared estimator is

capable to reproduce the shoulder near zero. As a result, it can be used as an alternative

to beta prime kernel estimator for this kind of data sets. The density estimation with

dependent data using asymmetric scaled inverse chi-squared kernel can be studied as

a further study.
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