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ON ESTIMATION OF PROBABILITY DENSITY FUNCTION

SUMMARY

Density estimation is one of the most fundamental problem in statistics. It can be
simply determined as the construction of an estimate of the density function from the
observed data when these observed data assumed to be a sample from an unknown
probability density function (pdf).

There are two approaches to density estimation problem: parametric and
nonparametric. Under parametric approach, shape of the density is assumed to be
unknown. Nonparametric approach relaxes this assumption since it relies solely on the
data and allows the "data speaks for itself". Nonparametric density estimation problem
arises in many fields, including economics, banking, genetics, climatology, hydrology,
etc. That is why, the literature about density estimation methods are vast. The kernel
method, orthogonal series method and delta sequence method have the major interest
among many other density estimation methods.

In the first chapter, a brief introduction about density estimation problem is given. The
purpose and scope of this dissertation are introduced. Some of the most used methods
are introduced and studies about these methods are mentioned as a literature summary.

In the second chapter, background and some basic definitions used in this thesis are
given.

In the third chapter, delta sequence method is studied. Many work related to density
estimation impose smoothness conditions on the density function f and its derivatives
although there are applications in which discontinuities in f are natural. However, the
assumptions of smoothness condition restricts the class of densities, so the weakening
of any conditions on the density is of considerable interest in application. For this
purpose, the conditions on the density functions are written by using the second
order modulus of continuity type majorants. Stronger local convergency rate of the
mean squared error (MSE) corresponding to d-variate delta sequence based density
estimator is obtained for both univariate and multivariate cases when compared with
the convergency rate of the MSE of the density estimators defined by the first order
finite differences.

In the fourth chapter, orthogonal series method is considered. Density function is
studied by means of Hermite functions and convergency rate of the mean integrated
square error (MISE) of density estimators by using delta sequences is obtained when
the support of the density function is infinite. Then, convergency rate of the MSE and
MISE of estimator are obtained for the densities having compact support. The results
of former publications about rate of convergence of estimators based on Hermite series
are improved.

In the fifth chapter, the kernel method is examined. In this method, a kernel is usually
considered as symmetric and it is widely believed that kernel is of minor importance
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than the smoothing bandwidth. But, when the estimated density has compact or
semi-infinite support, classical kernel estimators give rise to boundary bias problem.
To avoid boundary bias problem, a new asymmetric kernel estimator is proposed by
using beta prime distribution as kernel. Finite sample properties investigated and
comparisons are made with other asymmetric kernel estimators in terms of average
ISE via Monte Carlo simulations. In addition, adaptive Bayesian bandwidth selection
with Lindley approximation method proposed which is new for the asymmetric kernel
estimators. Then, it was shown that, the average ISE of the new estimator with this
new approach has better performance in comparison to the classical least squared
cross-validation method. Also, real data applications are performed to illustrate the
potential usefulness of the proposed estimator.

In the sixth chapter, asymmetric kernel density estimation method is studied for the
densities defined on the positive real line. Scaled inverse chi-squared density function
is used to construct a new kernel estimator. The adaptive Bayesian bandwidth selection
with Lindley approximation which is proposed in the previous chapter is used for
the numerical studies. Then, the average ISE comparisons are made using different
methods for the kernel estimators under consideration. Real data applications are made
to illustrate potential usefulness of the scaled inverse chi-squared estimator. Those
applications demonstrated that the proposed estimator is capable to reproduce the
shoulder near zero, unlike the beta prime estimator. Therefore, it can be used as an
alternative to beta prime kernel estimator for this kind of data sets.

Finally, last chapter devoted to the conclusions.
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OLASILIK YOGUNLUK FONKSIYONU TAHMINi UZERINE

OZET

Yogunluk fonksiyonu kestirimi istatistigin en temel problemlerinden biridir. Yogunluk
fonksiyonu kestirimi basit¢e dagilimi bilinmeyen bir veri seti i¢in yogunluk fonksiyonu
olusturulmasi problemi olarak tanimlanabilir.

Yogunluk fonksiyonu kestirimi i¢in parametrik ve parametrik olmayan yaklasimlar
mevcuttur. Parametrik yaklasimda, yogunluk fonksiyonunun birka¢ parametreye
kadar bilindigi varsayilmaktadir. Bdylece, bilinmeyen parametreler icin kestiriciler
kurmak, parametrik kestirim yaklagimi i¢in yeterlidir. Parametrik olmayan yogunluk
fonksiyonu kestirimi yaklagiminda bu varsayim hafifletilmistir. Parametrik olmayan
yaklasim sadece verilere dayanir ve "verinin kendi adina konusmasina izin verir".
Parametrik olmayan yogunluk fonksiyonu kestirimi ekonomi, bankacilik, genetik,
klimatoloji, hidroloji gibi ¢ok cesitli alanlarda karsimiza ¢ikar. Bu nedenle, parametrik
olmayan yaklasim ile ilgili literatiirde bir¢ok c¢alisma mevcuttur ve yogunluk
fonksiyonu kestirimi icin cesitli metodlar Onerilmistir. Bu metodlardan cekirdek
kestirimi, ortogonal kestirim metodu ve delta dizileri metodu en cok kullanilan
metodlardir.

Tezin ilk boliimiinde, yogunluk fonksiyonu kestirim problemi hakkinda kisa bir giris
yapilarak, kullanim alanlar1 agiklanmistir. Daha sonra, c¢ekirdek kestirimi, ortogonal
kestirim metodu ve delta dizileri metodu ile ilgili literatiir 6zeti verilmistir. Son olarak,
tezin amaci aciklanarak ilk boliim tamamlanmustir.

Ikinci boliimde, bu tezde kullanilan temel tanimlar ve metodlar verilmistir. Yogunluk
fonksiyonu kestirimi icin en ¢ok kullanilan metodlar agiklanmistir. Ayrica kestiricinin
performansint dlgmek icin gerekli ve kullanigh metodlar tamtilmistir.  Daha
sonra, yogunluk fonksiyonu kestirimi i¢in ¢ok Onemli olan bant genisligi secimi
metodlarindan bahsedilmistir.

Uciincii boliimde, delta dizileri metodu ¢alisilmistir. Yogunluk fonksiyonu kestirimi
ile 1ilgili literatiirdeki calismalarda, yogunluk fonksiyonu ve tiirevleri {izerine
diizgiinliik kosulu yazilmaktadir. Ancak, yogunluk fonksiyonunun siireksiz oldugu
noktalarin var oldugu bircok uygulama mevcuttur. Dolayisiyla, diizgiinliik kosulu
yogunluk fonksiyonu siniflarini kisitlar ve bu kisitin kaldirilmasi ya da hafifletilmesi
uygulamada oldukc¢a 6nemlidir. Bu amagla, yogunluk fonksiyonu iizerindeki kosullar
ikinci dereceden siireklilik modiilii majorantlar1 cinsinden yazilarak literatiirdeki
calismalarda cogunlukla kullanilan ikinci dereceden diferansiyellenebilme kosulu
hafifletilmistir. Ayrica, tek de8iskenli ve cok degiskenli durumlar i¢in d-degiskenli
delta dizileri yardimiyla yazilmig kestiricilerin bir noktada ortalama karesel hata
yakinsaklik hizi incelenmis ve birinci dereceden sonlu farklar yardimiyla yazilmig
yogunluk fonksiyonu kestiricileri i¢in daha 6nce elde edilen sonuglar iyilestirilmistir.
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Dordiincii boliimde, ortogonal seri kestirim metodu ¢alisilmigtir. Yogunluk fonksiyonu
kestiricileri Hermite serileri kullanilarak delta dizileri yardimiyla yazilmistir. Boylece
sonsuz destekli yogunluk fonksiyonlar1 i¢in kestiricilerin biitiinlesik hata kareleri
ortalamas1 (MISE) yakinsama hizi1 elde edilmistir. Daha sonra, kompakt destekli
yogunluk fonksiyonlar1 i¢in yazilmis kestiricilerin biitiinlesik hata kareleri ortalamasi
ve ortalama karesel hata (MSE) yakinsaklik hizlar1 incelenmistir. Delta dizilerinin
kullanilmast, literatiirde daha 6nce Hermite serileri yardimiyla yazilms kestiriciler i¢in
elde edilen sonuclarin iyilestirilmesini saglamigtir.

Besinci bolimde ise ¢ekirdek metodu ¢alisilmigtir. Cekirdek metodu parametrik
olmayan kestirim metodlarindan en yaygin olanidir. Bu metodda, cekirdek genellikle
simetrik olup, ¢ekirdek seciminin band genisligi seciminden daha az dnemli oldugu
diisiiniilmektedir. Ancak, yogunluk fonksiyonu kompakt ya da yar1 sonlu destege
sahip oldugunda klasik simetrik cekirdekler ile yazilmig kestiriciler sinir yanliligi
sorununa neden olmaktadir. Bu problemin ¢oziimii icin literatiirde bir¢ok yontem
mevcuttur. Son zamanlarda Onerilen bir yontem ise klasik simetrik ¢ekirdek ile
yazilmig kestirici yerine asimetrik cekirdek ile yazilmis kestirici kullanmaktir. Bu
tezde klasik kestirici yerine, beta prime yogunluk fonksiyonu uygun parametrelerle
cekirdek yerine kullanilarak, yeni bir asimetrik c¢ekirdek kestiricisi Onerilmistir.
Onerilen yeni kestiricinin, sinir yanlhiligi problemini ¢6zdiigii ve optimal ortalama
karesel hata ve biitiinlesik hata kareleri ortalamasi yakinsama hizina sahip oldugu
gosterilmistir.  Diger asimetrik kestiricilerde oldugu gibi, diizlemenin yapildigi
noktadan uzaklastikca varyansin azaldigi gozlenmistir. Bu da goézlemlerin seyrek
oldugu yogunluk fonksiyonu kestiriminde avantaj saglayan bir ozelliktir. Ayrica,
simiilasyon calismalar1 yardimiyla, bu kestiricinin sonlu 6rnek 6zellikleri incelenmis
ve bu kestirici ile literatiirde var olan asimetrik kestiricilerin ortalama biitiinlesik
karesel hatalar1 (ISE) karsilagtiilmigtir.  Kalin kuyruklu yogunluk fonksiyonlari
icin klasik bant genisligi secim metodlarinin yetersiz kaldigir bilinmektedir. Bu
nedenle, kalin kuyruklu yogunluk fonksiyonlar1 kestirimi icin klasik bant genisligi
secim metodlar1 yerine uyarlamali Bayesian bant genisligi secim metodu, asimetrik
kestiricilerin bant genigligi i¢in daha Once kullanilmamis bir metot olan Lindley
yaklastmi yardimiyla kullamilmistir. Bu yaklasimdan elde edilen bant genislikleri
ile klasik en kiigiik kareler ¢apraz gecerleme (LSCV) metodundan elde edilen bant
genigliklerinden alinan ortalama biitiinlesik karesel hatalar1 kargilagtirilarak onerilen
metodun kullanighlig1 gosterilmistir. Daha sonra, elde edilen sonuglar gercek veriler
kullanilarak orneklenmistir.

Altinc1 boliimde ise olgeklendirilmis ters ki kare yogunluk fonksiyonu kullanilarak
yeni bir asimetrik ¢ekirdek kestirici 6nerilmigtir. Bu kestiricinin asimptotik 6zellikleri
incelenerek ortalama karesel hata ve biitiinlesik hata kareleri ortalamasi optimal
yakinsama hizina sahip oldugu gosterilmistir. Ol¢eklendirilmis ters ki kare kestiricisi
icin, bir onceki boliimde onerilen Lindley yaklagimi yardimiyla uyarlamali Bayesian
bant genisligi secim metodu ile elde edilen bant genigliklerinden alinan ortalama
biitiinlesik karesel hatalar1 degerinin en kiiciik kareler capraz gecerleme ile elde edilen
bant genigliklerinden elde edilenden ¢ok daha kiiciik oldugu gozlenmisgtir. Simulasyon
calismalarinda ayrica, yeni 6nerilen kestirici ile beta prime kestiricileri ve Birnbaum
Saunders power-exponential ¢ekirdek kestiricileri ortalama biitiinlesik karesel hatalar
karsilagtirmalart yapilmistir. Ayrica, gergek veri uygulamalariyla yeni kestiricinin
performansi incelenmistir. Beta prime c¢ekirdek kestiriciler i¢in yapilan ¢aligmalarda
sinirda omuz sekline sahip verilerin ("shoulder data") uygun olmadig: buna kars1 yeni
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Onerilen kestiricinin uygun oldugu gosterilmistir. Boylece yeni kestiricinin beta prime
kestiricisine alternatif olarak kullanilabilecegi diisiincesi ortaya ¢ikmustir.

Son boéliimde ise bu tezde elde edilen sonuglar agiklanarak, gelecekte yapilabilecek
calismalardan bahsedilmistir.
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1. INTRODUCTION

Density estimation is one of the fundamental research topic of statistics since the
late 1950’s. First, density estimation was considered from theoretical point of view.
However, the development in technology of computing created extensive interest not
only in theoretical but also in practical aspect. Thereafter, nonparametric density
estimation is used in different fields such as economics, banking, genetics, hydrology,

climatology as well as many branches of statistics.

Density estimation is the construction of an accurate and a robust estimator of an
unknown density function from the observed data. There are two approaches of density
estimation: parametric and nonparametric. In parametric approach, the density of the
underlying data is drawn from one of the known parametric family of distributions,
namely the shape of the density assumed to be known. Then, one can create a
parametric density estimate of a density f underlying the data by plugging in estimators
for those parameters. On the other hand, nonparametric approach relies solely on the
data and allows the "data speaks for itself" without any assumption about the shape of

the underlying density.

The studies on nonparametric density estimation problem was introduced by
pioneering work of [1]]. After that, a lot of studies are performed. In those studies,
observations were generally assumed to be independent and identically distributed
(i.i.d.) random variables. Depending on the assumptions of the density function to
be estimated, different results for the local and global convergency rate of the mean

integrated square error (MISE) and mean square error (MSE) are obtained.

The kernel method for the estimation of the i.i.d. observations with the continuous
and symmetric density functions is one of the main interest in the statistics and it first
appeared in paper [1]. Then, the kernel method for the univariate case was studied
and it was shown that the convergency rate of the MSE is optimal when the density
function has two continuous derivatives as one can see in paper [2]. The assumptions

on the density functions were written in terms of the derivatives and Lipschitz condition



in paper [3]]. In that paper, more general density estimation problem which is called
delta sequence method is studied and different delta sequence estimators depending
on the local and global properties of the density functions are considered. For the
results obtained in [3]], the dominant terms in expansions of the MSE and MISE for the
trigonometric series density estimators is obtained in [4]]. After that, some asymptotic
properties of the delta sequence based density estimators for the multivariate case were

studied in [5]].

There is also a vast literature about an orthogonal series density estimation and in
those studies, estimators are written in terms of the classical orthogonal polynomials
including Legendre, Jacobi and Hermite. The choice of orthogonal polynomial
depends on the support of the density function. If the support is real line or the
half line then the Hermite or Laguerre series are useful. On the other hand, if the
support is compact, then Jacobi series or trigonometric series are recommended to use.
Orthogonal series estimation with the estimators based on the Hermite functions is
studied in [6]. They obtained the consistency and the rate of the convergence for the
MSE of the univariate and multivariate densities by writing the additional conditions
on the density functions. Also, Hermite series estimators for the estimation of the
density function, its derivatives and characteristic function were studied in [7]]. After
that, the orthogonal series estimation was studied in [8]]. They proposed an estimator
for the derivatives of the density function by using Hermite series and obtained better

convergency rate of the MISE and the convergency of the MSE than the former studies.

In paper [9]], the asymptotic properties of the estimators based on the Jacobi and
Legendre polynomials by using delta sequence method was studied. In that paper,
the certain summability methods were used to avoid the negative values of orthogonal
series estimators and also, the MSE and MISE convergency rate were obtained for the
densities having compact support. Recently, the rate of convergence of the MSE of
the estimators for the multivariate case based on delta sequence method is investigated
in [[10]. Unlike the former studies, the assumptions on the density function were written

in terms of the first order modulus of continuity type majorants.

In the literature, it is widely believed that the choice of smoothing bandwidth is of
crucial importance than the choice of kernel functions. Therefore, most of the studies

about kernel density estimation problem considered symmetric kernels. However,
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when the support of the density function is half line or compact then classical
symmetric kernel estimators yield the boundary bias problem. Boundary bias problem
occurs when kernels with infinite support are used for data with semi infinite or
compact support, since this would lead to a leakage of probability mass. Many
methods are proposed to overcome the boundary bias problem including data reflection
method discussed in [[11]], boundary kernel method studied in [[12], [13]], hybrid method
suggested by [14], the local linear estimator given in [15], empirical transformation

method proposed in [16] and generating pseudodata developed in [17].

As an alternative method to remove the boundary bias problem, the use of asymmetric
beta distribution as kernel when estimating densities with compact support was
proposed by [18]]. In this method, support of the asymmetric kernel matches the
support of the density to be estimated and the amount of smoothing are controlled
by the suitable parametrization chosen for the kernel functions. Then, for the densities
with semi infinite support, two new asymmetric kernel estimator was developed by
using gamma distribution as kernel in paper [19]. After that, this method was used
to develop the lognormal and Birnbaum-Saunders kernel estimators given in [20]. In
that paper, it was shown that these two kernel estimators are suitable for the high
frequency or ultra frequency data via simulation studies and real data application
of the high frequency financial intraday time duration data. Then, inverse gaussian
(IG) and reciprocal inverse gaussian (RIG) kernel estimators are proposed in paper
[21]]. As more recent studies generalized Birnbaum-Saunders, skewed generalized
Birnbaum-Saunders kernel estimators are proposed by [22], [23]. In paper [24], the
estimators studied in papers [20] and [21] was reformulated. Also, inverse gamma
kernel estimator was developed by [25]] and then, this new estimator was reformulated
and its asymptotic properties were studied in [26]. Moreover, in paper [27]], weighted
distributions are used to propose a new class of lognormal kernel estimators which is

first studied in paper [20]].

All of the papers discussed above used classical global bandwidth selection methods.
However, for some distributions, global bandwidth selection methods result in
unsatisfactory outcomes. Estimators obtained with global bandwidth selectors tend
to under or over smooth density functions. Because of this reason, the adaptive

Bayesian bandwidth selection method for the univariate symmetric kernel estimators



was proposed in paper [28]]. Unlike the classical methods, the bandwidth is considered
as a parameter of the model. In study [29]], the adaptive Bayesian method was used for
the asymmetric Birnbaum-Saunders power exponential (BS-PE) kernel estimators to
estimate the heavy tailed densities. Also, the adaptive Bayesian bandwidth selection
for multivariate discrete associate kernel estimator based on finite differences are

studied in paper [30].

Studies on nonparametric density estimation with censored data was initiated by the
work of [31]]. In paper [32]], comprehensive review about the earlier density estimation
methods for the censored data was given. The density estimation using asymmetric
kernels was studied in [33]] for the right censored case. In that paper, a data driven
Bayesian local bandwidth selection method was used. Then, Gamma kernel estimator
discussed in [[19] is adapted to the right censored case for the density and hazard rate

functions by [34].

In this thesis, the density estimation based on the delta sequence method, the
orthogonal series method and the asymmetric kernel method are of major interest. The
basic methodological approach of the theory is to obtain closeness of the estimator
to the true density in various ways. The most studied measures of discrepancy is
the MSE and MISE. So, in this dissertation, the rate of convergency of MSE of an
estimator is derived when estimating densities at a single point. Moreover, for the
global accuracy of an estimator the rate of convergency of MISE is investigated. In
Chapter 3, the delta sequence method is considered for both univariate and multivariate
cases. The motivation was to find an answer whether the MSE rate of convergence
of an estimator is improved when using densities belonging to the class of functions
defined by second order finite differences over the class of functions defined by first
order finite differences. For this purpose, the conditions on density function are
written in terms of the second order modulus of continuity type majorants. Moreover,
the second order differentiability assumption is weakened by utilizing second order
modulus of continuity type majorants. It is an advantage since there is applications
in which the discontinuity of the density function is natural. As a result, the MSE
rate of convergency is obtained better than the one obtained by using first order finite
differences. In Chapter 4, the orthogonal series method is considered and the delta

sequence estimators based on Hermite polynomials are studied instead of classical



Hermite series estimators. Then, the MSE and MISE rate of convergence show that,
the delta sequence estimators based on Hermite polynomials gives better estimates
than the former studies. In Chapters 5 and 6, the asymmetric kernel method is studied
to fix the boundary bias problem. A new estimator is proposed based on beta prime
distribution function in Chapter 5. Then, for the theoretical treatment the MSE and
MISE rate of convergence of beta prime estimator are discussed. After that, the
finite sample properties of the beta prime estimator are investigated via Monte Carlo
simulation studies. Furthermore, adaptive Bayesian bandwidth selection method is
used with Lindley’s approximation for the heavy tailed density functions. This method
is new for the asymmetric kernel estimators. It is shown that the bandwidths obtained
from adaptive Bayesian bandwidth selection method yields better estimates than the
one obtained from the classical least squares cross validation method. Then, real data
examples are given to illustrate the findings. In Chapter 6, a new asymmetric kernel
estimator is proposed by using scaled inverse chi-squared density estimator. Similar
to the existing kernel estimators, it is shown that, the proposed estimator is free of
boundary bias problem and achieves the optimal rate of convergence of MSE and
MISE. Numerical studies are conducted to compare the average ISE performance of
bandwidths obtained from LSCV method with the bandwidths obtained from adaptive
Bayesian method. Moreover, real data applications demonstrated that the scaled
inverse chi-squared estimator is suitable to capture the bumps of the models. Also,
it is suitable to use this proposed estimator when the estimated density has a shoulder

near zero unlike the beta prime estimator.






2. BACKGROUND AND BASIC DEFINITIONS

In this chapter, the preliminary definitions and background of this dissertation are

given.

2.1 Notation

It is assumed that the observations Xi,Xj,...,X, are independent and identically
distributed (i.i.d.) random variables (r.v.) with probability density function (pdf) f.
The symbol f will be used to denote the estimator of density functions which are

under consideration.

2.2 Definitions and Background

Definition 1. Let F be a collection of subsets of a nonempty set Q. Then F is called a

O — algebra if it satisfies the following properties:

i. The empty set O € F,

il. IfA € F, then the complement A° € F,

iii. IfA1,A,... is a sequence of elements of F, then their union |J A; € F.
i=1

A pair (Q,F) consisting of a set Q and a 6 — algebra F is called a measurable space.

The elements of F are called measurable sets or events.

Definition 2. Let (Q,F,P) be arbitrary probability space, and let X be a real valued
function on Q; X is a random variable (r.v.) if X = X(w) is a F-measurable function,

or equivalently X ' (U) = {wec Q: X (w) €U} €F.

There are two types of random variables, discrete and continuous. A discrete r.v. takes
on only countable number of distinct values. A continuous r.v takes an infinite number

of possible values (i.e. its range is closed or open interval).



2.3 Density Estimation

The problem of constructing an estimator for a set of observed data points based on
unknown pdf is called density estimation. There are a lot of approaches to density
estimation problem. Among many available approaches, the most used are histogram,
kernel density estimator, orthogonal series estimator and delta sequence estimator, see

[35].

2.3.1 Histogram

The oldest and simplest approach in density estimation is the histogram. If we have
an origin xo and a bin width A, then the bins of the histogram yields to be the intervals

[xo + mh,xo + (m+ 1)h] for integers m. In such case, the density estimator will be,

) 1 number of observations X; in the same bin 2.1
xX)=— .
n length of the bin

)

Although the histogram is the simplest and useful way to estimate a density function,
it is often necessary to use more sophisticated method. Because, histogram method
can have drawback when derivatives of the density estimates are required. Also,
the histogram method substantially depends on the choice of origin. So, alternative

methods to histogram are proposed.

2.3.2 Kernel Density Estimator

The kernel density estimator (KDE) is one of the most used method for density

estimation. The kernel estimator is defined as

flx) = % Y K (X;X’) (2.2)

i=1

where, & > 0 is the smoothing bandwidth, K(x) is kernel function that is always

nonnegative, generally assumed to be symmetric and smooth function, see Figure[2.]]

The kernel K satisfies the following conditions:
/K(u)du =1, /uK(u)du =0, /uzK(u)du =ky < oo (2.3)

Since kernel K usually considered as symmetric pdf, the constant k; will then be
variance of the distribution with this density. Also, the kernel K is everywhere

nonnegative and integrates to unity, i.e. probability density function, then from the

8
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Figure 2.1 : KDE for faithful data.
definition, fitself be a pdf. Moreover, finherits all the continuity and differentiability
properties of the kernel K.

Basically, the KDE smoothes each data point X; into a small density bumps and then by
adding all these small bumps together it constructs the final density estimate, see Figure
The kernel function K determines the shape of the bumps while the bandwidth £
determines their width. If the bandwidth /4 is chosen too large then all the detail of the
distribution obscured. Otherwise, if the bandwidth 4 is chosen too small the structure
of the distribution spurious, see Figure That’s why a lot of methods proposed to

choose the bandwidth in the literature.

2.3.3 Orthogonal Series Estimators

Suppose that a density function f(x) is given by
f)=Y aipi(x),xel (2.4)
i=0

where a; = [; f(x) i (x)dx and {¢;},., be a complete set of orthonormal basis

functions on an interval /. Then, the orthogonal series estimator is

) =Y @i (x) 2.5)
i=0

9
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for some integer m > 0, and @; is an unbiased estimator of a;, since
J(x) ¢i (x)dx = E[¢: (x)]

n

) 9 (X))
j=1

a; =

—

I
(2.6)

~
~

ai

S | =

where X1, ..., X, is a sequence of i.i.d. random variables.

2.3.4 Delta Sequence density estimation method

Let J be an open interval of the real line R. A sequence {J,(x,?)} of bounded,

measurable function on J x J is a delta sequence on J, if for each x € J and each

10



C”—function ¢ with support in J,

im [ 8,(x,0)0(t)dt = ¢ (x). 2.7)

m—oo |

Then, delta sequence density estimator can be defined as
~ 1 &
flx) = - Y Ou(x,Xi) (2.8)
i=1

Definition 3. A delta sequence {8, } is said to be a positive type delta sequence if for
x,tcR?
(b) [ op(x,t)dt=1;
R4
(©) Sn(x,t) < cm? ﬁ, where c is a positive constant.

14 (m|t—x])

2.4 Mean Square Error and Mean Integrated Square Error

Various measures have been studied to discuss the closeness of the estimator fto the
true density f. A natural measures of discrepancy is mean square error (MSE) when

estimating densities at a single point. MSE is defined by
—~ ~ 2 ~ 2 ~
MSE (7)) =E (Fo) - 1)) = (£ (7)) - 1) +var (7)) @9)
the sum of squared bias and variance at x. There is a relation between bias and variance
terms in equation (2.9). The bias can be reduced at the expense of increasing variance,
and vice versa, by adjusting the amount of smoothing. For the global accuracy of the

density estimator, the most widely used measure of discrepancy is the mean integrated

square error (MISE), and it is defined by

MISE (f(x)) —E / {f(x) . f(x)}zdx (2.10)

There are other global measures of performance of estimators such as mean integrated
absolute error, but due to its mathematical tractability the MISE criterion is widely used
in the literature. MISE can be expressed in an another way due to negative integrand
in (2.10). When order of integration and expectation reversed by Fubini theorem, the

MISE can be expressed in terms of its bias and variance, such as;
MISE (f(x)) = /E{f(x) —f(x)}zdx: /MSEX <]?> dx
:/{Ef(x) —f(x)}zdx—i-/var <f(x)> dx
11

(2.11)



Some approximate properties are the followings;
) ~ 1 xX—y
bias(x) = Ef(x) ~ f(0) = [ K (2 ) roay—f) - @12)

This equation can be used to obtain an approximate expression for the bias. Change of
variable (x —y)/h =1t gives
biasy(x /K o= ht)di — /K (—ht)—fW)]dt (2.13)
Then, Taylor series expansion yields
fle—ht) = f(x) = htf'(x) + 2Wf”( x) + (2.14)
and equation gives

biasi(x) = —hf' () [ 1K (0)dr-+ %hz 1) [ PR+

1 (2.15)
= Ehz f" (x)ky + higher order terms in h
1
/ biasp(x)*dx ~ Zh“k% / 1" (x)?dx (2.16)
Now, variance term can be written as
xX—y 1 .
varf) = [ e (52 sionds L 500 +biam (o
(2.17)
= —h/f(x—ht) 2d:——{f +0 hz)}2
n
Then, using Taylor series expansion variance term can be obtained as
1
varf(x) h/{f —htf'(x)+ .. Kt 2dt+0< )
(2.18)

_ /K 2dt+0(n) /K (1)2dr

Since f is a pdf, then integrated variance term is

/varf = —/K 1)2dt (2.19)
Therefore, combining integrated bias and variance, MISE can be written as
~ 1 1
MISE (7)) = ;%3 / F (6P / K(t)2dr. (2.20)
n

The optimal bandwidth minimizing MISE is,
1

1/5 ~1/5
hopszzz/S{/K(t)zdt} {/f”(x)zdx} nl/3, 2.21)

For detailed information see [35].

12



2.5 Bandwidth Selection

The problem of choosing the smoothing bandwidth is of crucial importance in density
estimation. The purpose of the estimation can be influential in the appropriate choice of
bandwidth. If the purpose is just to explore data in order to suggest possible models and
hypothesis, then it is sufficient to subjectively choose the bandwidth by looking at the
density estimates produced by a range of bandwidths. However, for many applications
this approach is impractical, so the requirement for automatic choice of smoothing
bandwidths arises. Different methods are proposed to choose the optimal bandwidth
such as plug-in, least squares cross-validation (LSCV), likelihood cross-validation

(LCV), etc.

2.5.1 Plug-in method

The intuitive and simple way to obtain bandwidths is plug-in method. Since the || /" ||%

is unknown in |l it was proposed to assign a value to the || f” H% for the ideal

bandwidth in [35]. For example, if a Gaussian kernel is being used, then
/f//(x)de: 6_5/¢/’(x)2dx

— gn_1/26_5 ~021207°

So, substituting this into the equation (2.21]), optimal bandwidth can be obtained as

~1/5 1/5
haaise = (4m) /10 (%nl/z) on 1 = (g) on 15 = 1.060n 15 (2.23)

(2.22)

For obtaining the better results, interquartile range can be used as a robust alternative

for a standard deviation. This modified version (see [35]])

(2.24)

int til
hyobust = 1.06 min (standard deviation, o erquilr314e range) n 1/

2.5.2 Least Squares Cross-Validation method

Given any estimator fh of a density f, we know ISE can be written as

~ ~ 2 ~ ~
ISEGi0) = [{Ai) =@} dx= [ fiwax—2 [ fix)f@dx+ [ rxrax
(2.25)
Since the last term of ISE does not depend on fh, so the ideal choice of bandwidth

corresponds to the choice which minimizes the quantity defined by

R(fy) = / fn(x)?dx—2 / Fn(x) f (x)dx. (2.26)
13



The idea of LSCV is to construct an estimate of R(ﬁ,) from the data themselves and
then minimize this estimate over 4 to give the choice of window width. Define fh,—i to

be the density estimate constructed from all the data points except X;, that is

1

(n—1)h LK (x _hXj> ’ (227)

J#i

ﬁz,—i(x) =
Now, define
—~ 2 2 —~
M) = [ FulePdx ==Y fii(X). (2.28)

The score M depends only on the data. So, the basic principle of LSCV is to minimize

M over h.

2.5.3 Likelihood Cross-Validation

The likelihood cross-validation choice of A is the value of & which maximizes the

function CV (h)
1 Pe
CV (h) =~} log fy i (X)) (2.29)

for the given data. This method, does not present severe computational difficulties.
Maximizing CV(h) should yield a density estimate which is close to the true density in

terms of Kullback-Leibler information distance, defined by

1f5i) = [ oo {100/fito) fa. (230

14



3. DELTA SEQUENCE DENSITY ESTIMATION USING SECOND ORDER
MODULUS OF CONTINUITY TYPE MAJORANTS

3.1 Purpose

In this chapter, the local convergence rate of MSE corresponding to d-variate delta
sequence density estimator are obtained for both univariate and multivariate cases. To
weaken the differentiability conditions used in the former studies, the assumptions on
the density function are written using the second order modulus of continuity type

majorants.

Throughout this chapter, x =(xj,xp,...,x;) denotes a point in the d-dimensional

d
Euclidean space R¢ and dx denotes [] dx;.
i=1

3.2 Second Order Modulus of Continuity Type Majorants

This section mainly stems from the use of second order modulus of continuity type
majorants. So, the definition of higher order modulus of continuity and its some of the

useful properties are given below.

Definition 4. The modulus of continuity of order k > 1 of a function f € C(|a,b]) is

defined as follows:
we(t) = we(fra,bit) = sup A’;lf(x)’ G.1)
x€la,b], x+khe(a,b], |h|<t
where
k ‘ kv k
i) = X (-1 () s v 62)
v=0

: b—a
defined for non-negative values of t < =2=.

In this dissertation second order modulus of continuity is used, so k = 2. For detailed

discussion of higher order modulus of continuity, one can refer to [36].
Definition 5. A function wy(t) : [0, 1] — [0, o) which satisfies the conditions:

15



(@) wi(0) =0,
(b) wy is nondecreasing,
(¢) wy is continuous,

d) 1, () < 2K Fwi(rh), 0<t1 <t

is called kth order modulus of continuity type majorant.

Modulus of smoothness generally used in approximation theory, Fourier analysis and
their applications. It describes the structural properties of functions; in particular, they
describe the measure of smoothness of the function via the k-th difference Af f(x). In
fact, for functions belonging to the Lebesgue space L”, 1 < p < oo or the space of
continuous functions C, the classical k-th modulus of continuity has turned out to be a

rather good measure for determining the rate of convergence of best approximation.

Following inequalities are necessary for the derivation of the proof.
wa(nt) < n*wa(t), n€N (3.3)

Vi>1,Y6 >0
wa(t8) < (26)* wa(9). (34)

In particular when ¢ = % then

wa(1) < Zowa(8). (3.5)

) S 6
wa(8) = wz(é)% _ WZ(S(Z‘S) /2tdt < c/ w2t<t>dr. (3.6)
0 0

The following operator is also useful for the derivation of the proof.

Definition 6. (see [37]). For the second order modulus of continuity type majorant

w2,
1

1)
Zy(wy,8) = / th(t) dt + 8% / W;@ dt (3.7)
0 1)

is called Zygmund operator.



Now, let {X,,} be a sequence of i.i.d. random vectors in R with density function f(x).

The delta sequence density estimator of f(x) defined by
n
fam(X) ==Y 6, (x,X;) (3.8)

where {8,,} with m = m(n) is a positive type delta sequence.

3.3 MSE of Delta Sequence Based Density Estimators Using Second Order
Modulus of Continuity Type Majorants

In this subsection, the bias and variance of the estimator are investigated separately,
since MSE of an estimator is defined as the sum of squared bias and variance of

estimator at a point.
Theorem 1. Let f € LP(R?),1 < p < o and {8,,} be a delta sequence of positive type.
(i) [ Om(x,t) f(t)dt — f(X) a.e. Lebesgue(x);

(ii) If there exist n > O such that | f(x+t)+f(x—t) = 2f(x)| <ewa (|t]), |t| < n < 1,

=0 (Zz (Wz, %)) . 3.9

Proof. Part (i) is similar to Theorem 1.25 of [38]], so its proof is not given. For (ii), by

then the order of bias term

[ Sn(x. 07t = 7 (x)

using change of variable and adding and subtracting some terms, it is obtained as

oo oo
[ x50t = 5)| = |5 [ Bulxx+O[(x-+0+ f(x—1) —27(x)

]|

It|I<n [t|>n

IN

(3.10)

By a change of variable to polar coordinates and using properties of positive type delta

sequence gives form > n~!:

n
m? d—1
Il SCI/WF Wz(l")dl’
0

m¢ m¢

n
T (a2 ()2 rd_lwz(r)dr+/—l oy Yy (r)dr 3 = ¢ (11 +Il> :
1

m

:Cl

S ~—s

(3.11)
17



Let’s investigate Ii and I;/ separately. Since 0 < r < % a bound for Ii can be obtained

as
1
m d
_ m d—1
I, = / : —i—(mr)‘”zr wo(r)dr
° (3.12)
< CQ/WZ(r)dr
r
0
For If
i m¢ c nw (r)
"o d—1 3 2
Il —/Wr Wz(r)dl"g m_/ ;"3 dr. (313)
1 1
Hence by combining I; and I;/, a bound for /; can be obtained as
1
[ wa(r) 1 fw (r) 1
I <cy / 2 dr~|——2/ 2 dr :0(22 (wz,—)>. (3.14)
r m r m
0 1

For I, the cases d > 1 and d = 1 should be investigated separately. When d > 1 using

Holder inequalities,

b= /Sm(x,x—i—t)[f(x+t)+f(x—t)—2f(x)]dt
t|>n

IN

/ S (%, X+ ) f (x + 1)dt| + / S (%, X+ ) f (% — )dt

3.15
t|>n t|=n G

12 / S (X, X+ 1) f(x)dt

t=n
<211, H‘l’nSquJr2|f(X)| [wn

where Yy = Xiiepd.jg>n}-

18



Now, to obtain an order for the H Yn O Hq term, it can be written as follows

1 q

Hwns’”Hq_ |:/{W776m’th} = /(Sm(X,X—I—t))th
t]>n
- . ‘ é
LN

e (#)q 7 (34 dr :0(%).

For ||y &l
m d—1
vt = | [ Ivadulat] <o [ (2t tar
r=n (3.17)
Ce dr 1
=5 f r—azo(ﬁ)
r>n
Therefore, (3.16) and imply
L=0 (#) . (3.18)
Whend =1:
L= /5m(x,x+t)[f(x+t)—l—f(x—t)—2f(x)]dt
t]>n
< [ satearollfarnld [ (sarxtnllfa-nld (G19)
ltI>n t|>n
£20f@) [ [8ulx+0)dr
lt|>n
For the first term of (3.19),

/|6m(x,x+t)||f(x+t)|dt§1tn>a1;<5m(x,x+t) / fxt1)| de
1>n - By (3.20)

1 1
sz—ns”:()(ﬁ)-

For the other terms, the same order can be obtained similarly. Hence, for d > 1 and

L=0 (iz) (3.21)
m

19
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Therefore, by combining (3.14)) and (3.21))

1/m n
<y i+/wzr(r)dr+i2/wz—(r)dr (3.22)
0

m2 m r3
1/m

[ ouixrttat -0

Then, using the properties of second order modulus of continuity type majorants a

bound for the # term can be obtained as

1 4 1 wa(r)
=) < wz(l)wz(%) < 090/ ;. dr. (3.23)
Finally,
’/Sm(x £)£(t)dt— f(x) :O<22 (Wz%)) (3.24)

To obtain MSE of the estimator, first let us investigate the variance of the estimator.

nVar{ﬂx)}ZVar{am(x,t)}:/(S,i(x,t dt—(/5 (x,0)f dt) (3.25)

For the variance term, it is sufficient to obtain the rate for [ §2(x,t)f(t)dt. Since

J 8n(x,) f(t)dt < || f]|.. and [|8(x,t) ., = O(m?) then
/52 (x,t)f dt<sup6 X, t) /6 x,t)f(t)dt =0 <md> (3.26)
Finally, )
Var{f(x)} ~0 (’%) . (3.27)

Hence using the orders for the bias (3.24) and variance (3.27), the local convergency

rate for the MSE of the estimator is
MSE {f(x)} = Var{f( )} + Bias® {f( )}
md (3.28)
_0< v (W ))
Corollary 1. Letwy(t) = |t|*, I < <2, m = nﬁ, then
MSE {f(x)} ~0 (n—z%> . (3.29)
Corollary 2. Let wy(t) = [t|*, m = ns then

MSE {f(x)} 0 (fﬁ (1nn)2> (3.30)
20



~

In the following example, it is shown that the rate of the MSE of f(0) is greater than
or equal to con~s (Inn)* and the rate of the MSE of £(0) is also less than or equal to
con~ % (Inn)? by the Corollary 2 when d = 1, which proves the MSE of f(x) at x = 0

has the best possible convergency rate.

Example 1. Let

0, elsewhere

flx) = {x<x+|xl>a —1<x<1

and wa(t) = 12, and
cm
Om(x,0) = ——.
1+ (mx])*

It can be seen that, f belongs to the function classes which is defined by second order

(3.31)

finite differences. Let us look at the rate of convergence at x = 0. For the bias term we
have

+o0 ! /
B _[_em 5 -
l n(x,0) f(x)dx — £(0) /1 1+ mh)’ d”/1 1+(m1xy)3x|x|dx (3.32)

C C1
=—In|[l+m’| > —Inm
m m
1
where m > 1. Hence, when m = n5 we have

MSE{f(0)} =var{ 7(0) } + Bias® { 7(0) } > Bias* { F(0) } =ean™5 (1nn)?. (3.33)

By using second order modulus of continuity type majorants the faster convergency
rate of the MSE of the densities that belong to the class which is defined by second
order finite differences is obtained when compared to the one obtained by using the

first order finite differences.
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4. DENSITY ESTIMATION BASED ON HERMITE POLYNOMIALS

In this chapter, delta sequence density estimation method based on Hermite
polynomials is proposed. The convergency rate of MSE and MISE of the density
estimators are obtained using Hermite polynomials for the densities having compact
or infinite support. By using delta sequence density estimation method, it is shown
that the convergency rate of the MISE is better than the rates obtained in papers
[6] and [7]. Moreover, for the density functions which have at least third order
derivative, the convergency rate of the MISE for the proposed estimator is faster
than the rate obtained in paper [8]. On the order hand, orthogonal series estimators
based on Hermite functions are useful in applied work. It requires considerably less
computational time than kernel estimators for large N since the computations are only
based on the recurrence relations for the Hermite functions. However, orthogonal
series estimators have a drawback since those estimators can take negative values as
oppose to modified Jakobi polynomials (see [9]). Hence, the problem of obtaining
a nonnegative orthogonal series estimator based on Hermite functions may be a

challenging work for future studies.

4.1 Delta Sequence Density Estimators Based on Hermite Polynomials

The Hermite orthonormal system over the real line R given by

ha(x) = <2kk!7r%)7 Hi(x)e 2, k=0,1,2,.. 4.1)
where
k
Ho) = (—1)fe® (L) e (4.2)
dxk

is the kth Hermite polynomial.

It is known that the normalized Hermite functions {/;} are the complete orthonormal
system in L, (—oo,0) and they satisfy the recurrence formulas
1 1
xhy = (g)zhk_ﬁ—(]%l)zhkﬂ, k=1,2,.. (4.3)
23



and | X

d k\? k+1\?

—hk:<_) hk—l_<L> heot, k=1,2,.. (4.4)
X

and satisfy the following inequalities (see [39]);

C1
|hk(x)\§m, x € (—oo,0), k=0,1,2... (4.5)
and
\hk(x)\g(k:ﬁ, x€(—aa), k=0,1,2... (4.6)

where a is any nonnegative integer and the constants ¢y and ¢, are independent of x

and k.

Let X1,X5,...,Xy be a sequence of i.i.d. random variables with unknown density
function f(x). Then, an unknown density function f can be written by means of the

Hermite series
fx) =Y ah(x) (4.7)
k=0

with the Hermite coefficients defined by
ay = /f(x)hk(x)dx. (4.8)

Throughout this chapter, we shall assume that f(x) is square integrable and we use ¢
or ¢j, i =1,2,...,m for any positive constant, independent of f. Now, by using Hermite

polynomials delta sequence density estimator can be defined as

~ 1 X
fvn(x) = ¥ Y 8u(x, X)) 4.9)
i=1

where

5y Xy = Y e T BAX)E 2 () (4.10)

0 (2tmt ) (2w )t A

Since orthogonal series density estimate can take negative values, then it is proposed

that density estimate at x is the max [O,j;v,n(x)] . For the discussion of the MISE and

MSE, following two lemmas, proved by [|6], are necessary.

Lemma 1. Assume that the function (x — %)r f € Ly(—o0,00) for some integer r > Q.
Then the coefficients ay, k = 1,2, ... satisfy the bound

€3

ag S T
= 8

(4.11)

where c3 is the Ly norm of (x — %)rf.
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Lemma 2. Let f(x) be continuous, of bounded variation, Ly and L, in (—oo,0). Then,

the series in

X) = Z aghy(x) (4.12)
k=0

converges uniformly in any interval interior to (—oo, ).

4.1.1 Convergency rate of MISE of estimators for densities having infinite

support

Theorem 2. Let (x— d%)jf € Ly(—oo,00) for j=1,2,...,r; then the MISE rate of
satisfies

MISE(fya(x)) = O (N—%) . (4.13)

Proof. First, lets investigate the integrated variance term

N/varan dx—/ /52“ £)di — /°°5n(x7t)f(t)dt dx  (4.14)

it is sufficient to investigate the rate of grows of [ [ 82(x,t) f(t)dtdx.

|| worwaas=[ [ (:Zohk(x)hk(z)>2 F()drdx

<[ | (k_zoh%<x>k§0h,%<r>> £(0)drdx

(4.15)
oo n %) n
_ / Y 2(x)dx / Z R2(0) £ (0)dt
—® k=0 <k
oo n 1%}
< [ Y Bwar Z [ mswar
—® k=0 (k+1)12 J—eo
From Lemma 1, it can be deduced that
c
|a| 3—2, k=0,1,2,... (4.16)
(2k+2)"
Since
/_ e H2(x)dx = /72"n! (4.17)

and using above bound, an order for the integrated variance term can be obtained as

23—6r

/ivar (f,v,n(x)) dx=0 (";) (4.18)
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Now, the squared bias term can be written as

- 2
Bias® (]?Nn(x)> = /5n x,t) f(t)dt — f(x)
- 2
= / Z hk dt — Z akhk (4.19)
= =0

2
:{ ) akhk(x)}
k=n+1

since Hermite functions are orthonormal in L,, then the integrated squared bias is

written as follows

/ Bias® (fun(x)) = Y & (4.20)

k=n+1
In order to find a bound for integrated squared bias, the inequality a2 <k’ b2 . 1s used
which is derived in paper [7] under the condition (x —d/dx)" f(x). Where by, is the kth
coefficients of the expansion of (x — %)r f in the Hermite series and the series Zb,%

converges. So, by virtue of the result of the paper [7],

o)

/Bias (an ) Z @2 =0n™"). 4.21)

k=n+1

—o0

Since MISE can be expressed as the sum of integrated squared bias and integrated

variance, by combining {#.18)) and (4.21)
-~ —12r
MISE(fya(x)) = O (Nm) . 4.22)
O

Remark 1. Hermite series method was used in [6] and [|7] and the convergency rate
(1)

of MISE of the density estimator was obtained as O (N _f) in paper [|6]] and for the

estimate of the pth derivative and assuming that the density has r derivatives where

(r—p)=
0 < p <r, the MISE rate obtained as O (N_6 & 2

> in paper [7]. Note that, for
comparison reasons take p = 0 for the proposed estimator and also for the estimator
used in paper [6|]. The hypothesis are the same but faster result are obtained using

delta sequence method.

2(r—p)
Remark 2. For r > 2, the rate of convergency of MISE is better than O (N — )

which was obtained in paper [8].
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4.2 Convergency Rate of MSE and MISE of Estimators for Densities Having
Compact Support

In this section, the rate of convergence of MSE and MISE of an estimator of densities
having compact support and based on Hermite functions are investigated. Since the

density function has compact support then the hypothesis weaken a little.

Theorem 3. Let f have compact support and suppose (%)j felyforj=12..r
then the MSE of the estimate (4.9) satisfies

2r+1

MSE(fyn(x)) = O(N~22) (4.23)

Proof. First, lets obtain bound for delta sequence by using

n
Z hk (x
k=0

If a convenient integral is used as the upper bound for the (4.24)), then

& 1
< Z [ ()| | () Zo—(l T (4.24)

On(x,2)| =

|6, (x,1)| = O (nl/ 2) (4.25)

For the variance term, since [ 8, (x,7)f(¢)dt<||f]|..
nl/2
Var( an /52 x,1)f(t)dt < Nsup|5 (x,1)] < s (4.26)

The bias term can be written as

bias®(fy n(x (/6 (x,2) f(2)dt — f(x ))2

2 2
- 1 1 = —2r-1
< bepr——r———— | < b k= )
(k%l "(2Kk)? (k—i-l)‘ll) (k;rl '
2

(4.27)

Note that, since f has compact support and D" f € L?, xPD* f € L? for all integers p > 0
and 0 < s < r. So, it follows that (x — D)r fe L?. Then, the bounds for }a,%| obtained
by Walter (1977) can be used to obtain an order for the squared bias term

2r+1

bias®(fyn(x)) = O(n~ 7). (4.28)
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So, MSE is

1

MSE (fya(x)) =0 (% + %) : (4.29)
n 2

1
If n = N1 is chosen, then the MSE rate of estimator based on Hermite functions is

obtained as below
2r+1

MSE(fy n(x)) = O(N~7+2) (4.30)

]

Theorem 4. Let f have compact support and suppose (%)j felyforj=1.2..r;
then the MISE of the estimate (4.9) satisfies

2r+1

MISE (fy.n(x)) = O(N~2+2), (4.31)

Proof. The proof is similar to earlier one. Notice that the bounds of delta sequence in

(#.25) is used for the integrated variance term. O

Remark 3. The rates obtained in this study are better than those reported by [|7] for
the densities having compact support. Moreover, the rates of convergence obtained in
this work is also better than those suggested by [|9] who used delta sequence method
to obtain rate of convergence of estimator based on Jakobi polynomials. In paper [9],
it is reported that, the convergency rate of MISE and MSE as O (N ’%> They are
considerably slower than the rates obtained in this study. However, in paper [9|], the
negativity problem of orthogonal series estimators based on Jakobi polynomials was
solved by using certain summability methods. In this thesis, the negativity problem of
Hermite series estimators could not be solved, so it is assumed that density estimate at
X is the max [O,fANﬂ (x)} to avoid the negative values of the estimator. So, the problem
of obtaining a nonnegative orthogonal series estimator based on Hermite functions

may be a future study.

28



5. BETA PRIME DENSITY ESTIMATOR

It is generally thought that, the bandwidth choice is more crucial than the kernel
function in density estimation problem. However, when the density function has
closed or semi infinite support, then classical symmetric kernel estimator has edge
effect (or boundary bias problem) since it causes the leakage of probability mass. In
this chapter, to avoid the edge effect problem, a new asymmetric kernel estimator is
established to estimate the densities having support on [0,c0). Beta prime distribution
function is used as a kernel instead of classical symmetric kernels. It is shown that,
beta prime kernel estimator is free of boundary bias problem. Also, similar to existing
asymmetric kernel estimators, the variance of the beta prime kernel estimator reduces
as the position, where the smoothing is made, moves away from the boundary. Then,
the expressions for the bandwidths that minimize the asymptotic approximation for the
MSE and MISE are obtained. Furthermore, simulation studies are conducted to show
the superior performance of the beta prime estimator over some existing asymmetric
kernel estimators in terms of average ISE. For bandwidth selection problem, adaptive
Bayesian with Lindley approximation method is proposed. Lindley approximation
method have not been used before for the asymmetric kernel estimators. To show the
efficiency of this method, a comparison is made between bandwidths obtained from
adaptive Bayesian with Lindley approximation method and bandwidths obtained from
global LSCV method by using simulation studies. Moreover, real data applications are
made to demonstrate the usefulness of the beta prime estimator and new bandwidth

selection method.

5.1 Beta Prime Kernel Estimator

Let X;, i = 1,2,...,n be a random sample from a distribution with an unknown pdf f

having support on the positive real line. Lets assume

1. f is twice continuously differentiable,
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(1 4x) 72 f(x)dx < oo
ﬁiﬁﬂf@”ah<w‘K{U+@ﬂ@&am<w.

These assumptions are necessary for the Taylor expansion and finiteness of the

integrated bias and integrated variance.

Let Kp(y ) be the density of a Betaprime(A, i) distributed random variable ¥ defined

as:
A—1 -
y 4y

Kpin () = , y>0,A>0,u>0. 5.1

s O =B )

The mean and variance of Y are equal to

A A(A —1
E)=—" us1, varry=2ATETD s s
p-l (H=1)"(1=2)
The beta prime kernel can be written as
%2+x(1 + )—(%2+x+%+ﬁ+2)

K ) =2 ! S y>0 (53)

BCp+x+1 3+ +1) " A% . N)

where f3 is the beta function, b is a smoothing parameter satisfying the condition that

b — 0 and nb — o as n — oo, and x is the point where the density is estimated. So, the

beta prime kernel estimator defined as, for x € [0, ),

flx) = ZKB(%—HC—H%—Fﬁ—i—I)(Xi)' 5.4

i=1

S | =

It is similar to standard kernel estimator, only replaces fixed kernel with beta prime
kernel. Figure @ demonstrates the kernel shapes of IG, RIG, Gam2 and beta prime
depend on the value of x and smoothing parameter . The amount of smoothing applied
by the illustrated kernel estimators are controlled by the chosen parameters. Note that,

the choice of parametrization is not unique.

The two Gamma kernel estimators denoted by Gam1 and Gam?2 of [19],the IG and RIG
kernel estimators of [21]] and Birnbaum Saunders-power-exponential (BS-PE) kernel
estimator of [29] are listed below for the comparison purpose:

1 & (X,')x/ b 67%

fGaml(x): lzzibx/b“l“(x/b—l—l)

(5.5)
n
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Figure 5.1 : Shapes of the kernel functions for different x values and b=0.2.

X.
. 1 (Xl,)pb(x)_l e_fl
T ‘ 5.6
fGam (%) nl; bPIT (pp (x) oo
where
e if x> 2b
PTUGE L v
and |
. 1& b2 L (X a
Iy b2 S (e A, ST 5.7
Ji6(x) ni:Z{(ZEX.z’)]/zexp{ 2bx(x +Xi) o
1
N 1 b*% x—b( X; x—>b
IR AL X0 ) ) 5.8
friG(x) ni_zi(mxi)uz eXp{ 2b (x—b X } 9
~ 1 & % 1 X L (X, x V
_ —— /%3 )XP( 55 |~ Ty 2 ’
fBS PE(X) nl_zl 21/21}1_,(%‘}) 4hl ( /xXi Xl3) p< 2h;} (x Xi > )
v (5.9)

Now, lets investigate the integrated squared bias and integrated variance terms to obtain

the MISE of the beta prime estimator.

Proposition 1. The bias of the estimator is

Bias (f(x)) —b {f/(x)jt (1;” ()| +o(b), (5.10)

where b satisfies the condition that b — 0 and nb — o as n — oo.

Proof. To prove the bias of the estimator, note that

E{f} = [ Kya s OO =BG} GD)
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here &, is the Betaprtme( +x+1,5 4 + 3 + 1) random variable.

By standard moments properties of beta prime distribution,
E(&)=x+xb+0 (b)), Var(&)=b(x*+x)+0 (b?). (5.12)

From Taylor expansion and equation (5.12), it can be obtained as

B (F20) = 10+ FWEL (€ + LB (&) —af .
y (5.13)
= £+ bf @)+ b1+ o)
Then, the bias of the beta prime estimator is
Bias{f(x)} =b (f’(x) +(1 +x)fT(x)) +o(b). (5.14)

Since the bias is O(b) near the origin as well as in the interior, the beta prime estimator

is free of boundary bias. [

Proposition 2. (Variance) The variance of beta prime estimator is

Var{F(x)} = ﬁb—én—lu +2) 2 f(x)+o(b 2n ). (5.15)

Proof.

~ 1
Var{f(x)} = Zvar{KB(’f+x+17i+)cL,+1)(Xi)}

2
E (KB()f+x+1,’,§+);h+1)(X"))

and by multiplying both numerator and denominator by (- 2 +2x+1, 2bx + 5 + =5 T2),

(5.16)

1
T n

+0(;)

it is obtained that
2

2 o [ Etx (S il 42)
yE T (14y) ' b7 x+b
E (KB ﬁ 1x 1 1 (XJ) :/ 3 " f(y)dy
Gy tetlptasth) o \ BE+x+1,3+15+1)

22 (2 2, 2
:Ab/ooy””x(lﬂ) Gt 255503 f(y)
o B2t 1315 04D

= ME[(1+&) " £(&)]

dy

(5.17)

where

2x2 2x
42+ 1,24 2 42
Ap = PUT W ) (5.18)

B2(E +x+1,g+x+,,+1)
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B is the beta function and &, is a Betaprime (% +2x+1, % + )ﬁ + 2) distributed

random variable.
By using Stirling formula I'(z+ 1) = \/27rexp(—z)zz+% /R(z), where R(z) converges
to 1 as z — oo and R(z) < 1 for any z > 0, an order for the equation (5.18) can be

Ay~ — b V2 (1)) (5.19)
NG
Then, applying Taylor expansion again,
E|(1+8) 7 1(&)] = (1457 £(x) +o(b). (5.20)
Therefore, variance term is
Var{f(x)} = e ) ) do(b Y (5.21)
2T ‘ '
[

Since MSE is the sum of squared bias and variance of the estimator, by combining

equations (5.14) and (5.21)), MSE is obtained as

1 2
msE (7)) =1’ (f’<x> +a+nl <X>> b (1) @) o0+ )

2 2w
(5.22)
Then, the optimal bandwidth that minimizes the MSE is
2
1 5
. 1 I+x) 2 T2
byse = (8 ( lx) f) 2) n=3 (5.23)
VI (110 +3(1+2)f"())
So, the corresponding optimal MSE is
~ 5 _1 3 y 1 " 3 _4
MSE(F(x) = —— {14072 f0)}" S F @+ 5 (140 (0) p 075 (524)
(8v7)?
Similarly, the optimal MISE based on
2
Rl rax |
byiise = 4y = 5 n=s. (5.25)
205 £ @)+ B2 ()|
is
(- 5 1 o B 4/5
MISE { f(x)} = 57 {m /0 (14x)"2 f(x)dx]
(5.26)




The optimal bandwidths (5.23) and (5.25) obtained for MSE and MISE depend
on the unknown density function f. For this reason, global automatic bandwidth
selection methods like LSCV, LCV are available in the literature. However, for some
distribution functions this global methods give rise to unsatisfactory results. Therefore,
adaptive Bayesian bandwidth selection method is proposed as an alternative way to this
methods. For small sample sizes, adaptive Bayesian approach has good smoothing

quality. That’s why, there has been a considerable interest in this approach, recently

(see [28]]; [291]; [401]).

5.2 Adaptive Bayesian Bandwidth Selection Method Using Lindley’s Approxima-

tion

Following the papers [28] and [40]], the adaptive asymmetric kernel estimator of f is
given by
3 1 &
F) =~} Kep (X0) (5.27)
i=1

where K, j, is the adaptive asymmetric kernel and h; is the variable bandwidth
associated with each observation x;. Therefore, f(x;) can be estimated by the adaptive
asymmetric associated kernel estimator based on all points except x;. So, the leave one
out estimator is given by the formula

i) = Pl i} o) = —

Y Kew (X)) (5.28)

n—1.
J=Li#j

where {x_;} is the set of observations excluding x;. Let 7(k;) be the prior distribution

of h;, then the posterior of each variable bandwidth A; takes the form

~

_ _ SGiltxeid hi)m(h)
J (il {x=i} hi) e (hi)

Under squared error (SE) loss functions, the Bayes estimates of 4; is of the form

ﬂ(hi ’X,‘) (5.29)

hi = / hire(hi|x;)dh;. (5.30)

Usually, these expression cannot be obtained in a simple closed form. Alternatively,
Lindley’s approximation (see [41]) method for the computation of these equations can
be used. Lindley’s approximation is a method to obtain Taylor series expansion of the

function involved in posterior moment,

(5.31)

_ Ju(h)v(h)exp(L(h))dh
E{u(h)x} = [v(h)exp(L(h))dh
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where u(h) and v(h) are arbitrary functions of /2 and L (k) is the log-likelihood function.

For a single parameter case,

1 1 1\? 1
E{hjx} = h+p (_L_Z) +§ <_L_2> Lz+0 (;) . (5.32)

where p is derivative of the logarithm of prior function with respect to A, L, and L3 are

second and third derivative of log-likelihood function of &, respectively.

Now, lets define the beta prime kernel estimator with variable bandwidth 4; and
the approximate Bayes estimates of 4; under the SE loss function. The conditional
distribution of x; excluding the observation x; and the beta prime kernel with variable

bandwidth £; are given respectively by

-~

1 n
fealfremid ) = —= ) Ky (X)) (5.33)
n—1.4~, .
J=Li]
and
2 b (g L 12)
X)) (14 x;) T R
Kxi7hi(Xj):< J) ) ! A | (5.34)
B Ly 1)

where 3 is Beta function. Therefore, the approximate Bayes estimates of /; under the

SE loss functions is obtained as

. 1\ 1/ 1\*,

W= hi+p(——)+=(-——) L} | (5.35)
where h; is the posterior mode obtained from the equationQ = log(f_i(x;)) +
log(m(h;)) by equating % to zero. L3 and Lj are the second and third derivative

of log(f—i(x;)) with respect to k;, respectively. Note that, the closed form of the L3, L}

cannot be obtained in a simple form so it is not listed here.

5.3 Simulation Results

In this section, by using different underlying distribution functions, the finite sample
performance of the two gamma kernels, IG and RIG kernel estimators are compared
with the beta prime kernel estimator in terms of average ISE’s of the estimators.
Then, to show the effectiveness of the adaptive Bayesian bandwidth selection method
with Lindley’s approximation, the performance of the bandwidths obtained from
this method and the bandwidths obtained from global LSCV method are compared
through Monte Carlo simulation studies. All simulation studies are performed using R

statistical software.
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5.3.1 Simulation studies to compare the average ISE performance of the

estimators

The two gamma kernel estimators, IG and RIG kernel estimators and beta prime
kernel estimator are considered to investigate their finite sample properties in terms
of the average ISE. Data sets are generated from various distributions (see Figure [5.2)
described in A-E given below. Some of these distributions have been also studied

in [21]] and [27]].

(a-1)

A. Beta prime density: f(x) = (lﬂ)(x“W’ with parameters (¢, A) = (2,1).
B. Weibull density: f(x) = M—ejm with parameters (o, A) = (3,1).
L1=1) p=(/2)

C. Gamma density: f(x) = T() with parameters (u,A) = (1,3).

-V 3

D. Mixture Gamma density: f(x) = 0.5% T ) +O S’C)b2 eu
2
(1, A1) = (1,3), (2, 42) = (2,3).

, with parameters

X ,J'I X IJ'2
_ T\ 2
E. Mixture Weibull density: f(x) = 0.54"" Zf;l< ) 40,58 Zf;z(lz) with
1 2
parameters (ui,41) = (3,1), (u2,A2) = (5,3).
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Figure 5.2 : Density plots of the cases A-E.

1500 replications of sample size n=50, 100, 200 and 500 are generated for each density
defined in cases A-E. Numerical integrations are done by using Gauss Legendre
quadrature with 96 knots. The performance of the estimators are compared in terms of

the ISE criterion which is defined by

ISE — /0 ’ {Fo - f(x)}zdx. (5.36)

where a is chosen for each underlying distribution in such a way that the densities

having virtually zero values outside of [0,a]. For each replication, the ISE of each
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competitive kernel estimators are calculated from a grid of bandwidth values such that
the end points of the sequence of b are chosen in such a way that no minimum ISE
is achieved at the end point. For example, the sequence for b starts from 0.001 with
increment 0.001 up to 2 for IG, Gaml and Gam?2 kernels and it starts from 2 with
increment 0.001 up to 4 for RIG and beta prime kernels for the case A in Table [5.1]
Then, the minimum average ISE and corresponding smoothing parameter b for each
kernel estimator are reported in Table For the other cases similar idea is followed.
The sequence for b created with this procedure covers the sequence used in [21]. From
Table [5.1] one can see that, the average ISEs of all estimators decrease as the sample
size n increases. Beta prime kernel estimator outperforms others except for the case D.
In this case, the differences are almost negligible and it may be due to the small sample
size. The IG kernel estimator is dominated by others in all cases. As explained in [21],
when the shape parameter of Gamma distribution is less than 1.5, then MISEg;; and
MISE| are not well defined. That is why, in case C, RIG and IG kernel estimators
do not perform well. However, for this case beta prime kernel estimator yields the

smallest average ISE. Figure (5.3)) illustrates the pointwise bias, variance and MSE of

Bias

-0.02 0.02 0.06
I N N N B |
[

Bias Square

0.000 0.002 0.004

-0.08

Var
0.004
|

MSE

0.000 0.004 0.008 0.012

Figure 5.3 : Bias, Variance and MSE comparison of kernel estimators.

RIG, Gam?2 and beta prime kernel for x € [0,2], for the Weibull(3,1) density when the
sample size is 200. As stated in [19], Gam2 kernel has better global performance due
to the smaller MISE so only Gam?2 kernel is used in the comparison. When x > 1.5, the
beta prime estimator has smaller MSE compared with other estimators. On the other

hand, there are no clear comparison among estimates for x < 1.5. Also, from Figure
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Table 5.1 : Average ISE of different kernel estimators.

n I1G RIG Gaml Gam?2 Beta Prime
50 0.0098 0.0017 0.0015 0.0043 0.0009
(0.006) (3.6) (1.05) (0.32) (3.58)
100 0.0058 0.0011 0.0009 0.0030 0.0005
(0.006) (3.59) (0.87) 0.24) (3.1
200 0.0031 0.0008 0.0005 0.0016 0.0003
(0.005) (3.58) (0.69) (0.18) (2.67)
500 0.0014 0.0006 0.0003 0.0008 0.0001
(0.004) (3.58) (0.51) (0.13) (2.29)
50 0.0575 0.0282 0.0301 0.0278 0.0261
(0.034) (0.036) (0.033) (0.037) (0.018)
100 0.0352 0.0172 0.0181 0.0170 0.0159
(0.023) (0.026) (0.024) (0.027) (0.013)
200 0.0218 0.0107 0.0110 0.0106 0.0098
(0.016) (0.019) (0.018) (0.020) (0.009)
500 0.0108 0.0054 0.0057 0.0054 0.0050
0.011) (0.013) (0.012) (0.013) (0.006)
50 0.3073 0.0177 0.0057 0.0060 0.0056
0.167) (0.185) (0.481) (0.747) (0.594)
100 0.2163 0.0114 0.0035 0.0037 0.0033
(0.132) (0.116) (0.360) (0.582) (0.422)
200 0.1257 0.0074 0.0022 0.0023 0.0020
(0.089) (0.064) 0.271) (0.439) (0.298)
500 0.0543 0.0040 0.0011 0.0012 0.0010
(0.055) (0.028) (0.179) (0.289) (0.189)
50 0.0877 0.0087 0.0031 0.0031 0.0035
(0.07) (0.284) (0.796) (1.211) (0.888)
100 0.1092 0.0057 0.0018 0.0018 0.0019
(0.094) (0.198) (0.642) (1.089) (0.705)
200 0.0834 0.0037 0.0011 0.0012 0.0011
(0.064) (0.128) (0.507) (0.944) (0.543)
500 0.0343 0.0021 0.0006 0.0008 0.0005
(0.036) (0.069) (0.365) (0.648) (0.368)
50 0.0319 0.0160 0.0169 0.0159 0.0158
(0.039) (0.048) (0.046) (0.050) (0.027)
100 0.0198 0.0095 0.0097 0.0094 0.0092
(0.021) (0.035) (0.034) (0.036) (0.019)
200 0.0142 0.0059 0.0062 0.0059 0.0054
(0.014) (0.029) (0.027) (0.029) (0.016)
500 0.0066 0.0030 0.0031 0.0030 0.0029
(0.009) (0.018) (0.017) (0.018) (0.009)
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(5.3)), one can see that the variance of the estimators reduces as one moves away from
the boundary as oppose to bias terms, this is considered as an advantage if estimated

density has sparse areas.

5.3.2 Comparison of adaptive Bayesian analysis using Lindley’s approximation

with LSCV method

In this subsection, for the purpose of showing the usefulness of the Lindley’s
approximation for the heavy tailed distribution, a comparison is made between average
ISE’s of beta prime estimator obtained from adaptive Bayesian method using Lindley’s
approximation and average ISE’s of beta prime estimator obtained from global LSCV
method. In the paper [29], the Bayesian adaptive approach under quadratic loss
function based on BS-PE kernel estimator is studied, then exact expression for the
variable bandwidths 4; is obtained. Therefore, the average ISE’s of beta prime
estimator obtained from adaptive Bayesian method using Lindley’s approximation and
LSCV method is also compared with the average ISE’s of the BS-PE kernel estimator

obtained from the Bayesian adaptive approach under quadratic loss function.

As a prior density function of bandwidth /;, beta prime distribution is chosen with

parameters A and u:

(i) = ()" ! A>0, pu>2 (5.37)
TR TV A |
where mean and variance of the prior are
E(hj) = L, w>1;, Var(h)= A4 tu —U) , u>2 (5.38)
p—l (r=1)"(r-2)

Note that, the prior selection and its parametrization are not unique for the Lindley’s
approximation method. By following the idea of [42] and [29], the prior parameters
are chosen as A = 1 and pu = n*/>, since E (h;) > 0for A >0and u > 1, Var(h;) >0
for A > 0 and u > 2, also for large values of u, prior of 4; is concentrated at zero. Note

that in practice, U = n*/> may not be satisfactory for the smoothing quality.

For comparison purpose of findings with those of [29]], the data is simulated from
heavy tailed distributions which are Burr, lognormal, mixture of gamma and Levy
distributions. For each density, 1500 replications of sample size 25, 50, 100 and 200
are generated and the results are given in Table
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Table 5.2 : Comparison of average ISE’s of adaptive Bayesian and LSCV methods.

n LSCV_BPR Lindley_BPR Quadratic_BS-PE
A 25 0.0128 0.0106 0.0161
50 0.0072 0.0061 0.0096
100 0.0042 0.0036 0.0058
200 0.0027 0.0021 0.0034
B 25 0.0598 0.0277 0.0329
50 0.0339 0.0183 0.0214
100 0.0140 0.0111 0.0127
200 0.0085 0.0071 0.0079
C 25 0.0111 0.0089 0.0113
50 0.0091 0.0054 0.0068
100 0.0047 0.0034 0.0041
200 0.0018 0.0015 0.0025
D 25 0.0771 0.0272 0.0328
50 0.0594 0.0237 0.0272
100 0.0577 0.0215 0.0231
200 0.0517 0.0197 0.0206

1

A. Lognormal density: f(x) = TR SXp (—# (Inx — /.L)2> with parameters(i,A) =

(1,1).

B. Burr density: f(x) = % with parameters (u,A) = (3,1).
X

-1 -1
C. Mixture of Gamma density: f(x) = 0.5 225 | O.SW with parame-

Ny (2)
ters (U1, 42) = (2.5,10).

D. Levy density:f(x) = %*exp (—L> , X > W, with parameters (,A) =

" (v—p)3 20=h)
(0,3)-

Table [5.2] illustrates that, adaptive Bayesian method with Lindley approximation
dominates BS-PE adaptive kernel estimator used in [29], despite the fact that they use
exact values of bandwidth h; for heavy tailed distribution function. The bandwidths
obtained from adaptive Bayesian with Lindley approximation method yields smaller
average ISE than the bandwidths obtained from global LSCV method. Moreover,
Lindley approximation method is suitable for selection of different priors. On the
other hand, for the light tailed distributions, Lindley approximation with beta prime
prior do not perform well, but choosing different prior one can obtain good results. For

example, inverse gamma prior leads a better average ISE for Gam(1,3) distribution.
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5.4 Real Data Applications

Two data sets studied to illustrate the performance of the beta prime, Gam2 and RIG
kernel estimators. Since IG kernel estimator is not suitable for the data sets, it is not
displayed in the figures. The first data set is the daily ozone level measurements in New
York, May to September, 1973 and it consists of 116 observations This data set have
been studied earlier in the paper [43]]. The second data set is about snowfall collected
for Grand Rapids, MI, going back to 1893. In this thesis, only the data collected in
December is used. This data set consists of 119 observations of the inches of snow. It
is available at http://www.crh.noaa.gov/grr/climate/data/grr/snowfall/. For the second
graphics, in Figure (5.4)) and Figure (5.5]), optimal global bandwidths are obtained by
minimizing the LSCV criterion for the kernel estimators. Beta prime kernel estimator
captures modes and bumps of the models and it can be considered satisfactory for this
kind of data sets. Beta prime, Gam2 and RIG estimators shows similar performance for
the data sets. For the last graphics in Figure (5.4) and Figure (5.5), bandwidths obtained
by using adaptive Bayesian with Lindley approximation method. Prior distribution
with parameters A = 1 and u = n'/3 is used for ozone data and snowfall data. In those
graphics, the solid line represents the beta prime estimator with bandwidth selected
by the adaptive Bayesian method using Lindley approximation and the dashed line
represents the beta prime estimator with bandwidth selected by the LSCV method. It
can be seen that both adaptive Bayesian and LSCV method successfully captures the

bumps and unimodality of the models.
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Figure 5.4 : Density estimates for ozone data.
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6. SCALED INVERSE CHI-SQUARED KERNEL ESTIMATOR

In this chapter, the scaled inverse chi-squared kernel estimator is proposed as an new
kernel estimator for a density with support [0, o) and therefore, the class of asymmetric
kernel estimators is extended. Scaled inverse chi-squared distributions are closely
related to the inverse chi-squared distribution and the inverse gamma distribution.
Also, it can be used as a conjugate prior for the variance parameter of a normal
distribution in Bayesian statistics. It is showed that, scaled inverse chi-squared kernel
estimator is free of boundary bias, has flexible shape, always nonnegative and achieve
the optimal rate of convergence for the MSE and MISE similar to the other asymmetric
kernel density estimators. For the selection of bandwidths, the adaptive Bayesian
bandwidth selection method with Lindley approximation is used for the proposed
estimator. Then, numerical studies are conducted to compare the performance
of bandwidths obtained from global LSCV method with the bandwidths obtained
from adaptive Bayesian bandwidth selection method with Lindley approximation.
Furthermore, real data applications illustrate that it is suitable to use this proposed
estimator when the estimated density has a shoulder near zero and it captures the bumps
and unimodality of the models. Note that, neither beta prime kernel estimator nor
BS-PE kernel estimator is appropriate for shoulder data. Therefore, scaled inverse chi-
squared kernel estimator can be used as an alternative to beta prime kernel estimator

for this kind of data.

6.1 Scaled Inverse Chi-Squared Estimator

Let X1,X3,...,X, be an 1.i.d. random sample from a distribution with an unknown

probability density function f defined on the positive real line.

The following assumptions are made for the Taylor expansion and the finiteness of

integrated squared bias and integrated variance terms.

i. f1is twice differentiable
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. [2x 2 f(x)dx < oo

i, [5°f/(x)2dx < o and [3° (xf" (x))*dx < oo.

Scaled inverse chi- squared distribution is denoted by SI_x~ (v T ) with parameters
v, 2. Let K y-2(v,72) be the density of a SI_x~2(v,7?) distributed random variable

Y, it is defined as:

(t2v/2)"/* exp (—Vz—f)

KSI_X*Z(v,ﬂ)(y) = F(V/Z) yl+% Y>> 0. 6.1
Then, the mean and variance of Y are
2 2.4
VT 2veT
EY)=——, v>2, Var(Y)= 5 , v>4 (6.2)
(v-2) (v—2)*(v—4)

So, the scaled inverse chi- squared kernel estimator considered in this thesis can be

defined as

W i
flx) =~ ;KS,_XQ(% 15, erneran) (X)), (6.3)

(x+5b)

where b is smoothing bandwidth satisfying the condition b — 0 and nb — oo as n — oo,

and x € [0, o) is the point where the density is estimated.
Proposition 3. (Bias) The bias of the proposed kernel estimate is equal to
Bias (f@)) =b[f(x)+xf"(x)] +o(b). (6.4)

where b satisfies the condition that b — 0 and nb — o as n — oo.

Proof. As in previous section E (f(x)) can be written as

/ ST y-2 /\+b)(x+3b))( )f()’)dy =F (f(éx)) (6.5)

(x+5b)

where &, is the SI_x_Z(% +35, %) random variable. By Taylor expansion and

standard properties of scaled inverse chi-squared distribution

E(f(8)) = £) +b7'() + 266 o), 66)

Then, the bias term is
Bias (fA(x)) =b|[f(x)+xf"(x)] +o(b). (6.7)
[
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Proposition 4. (Variance) The variance of the proposed kernel estimate is equal to

Var (]?(x)) = 2;\/5

Proof. The variance term for the scaled inverse chi squared estimator can be written

b 2x 2n  f(x) +o(b in ). (6.8)

as
v (A( )) = 1V K (X;)
e Y Sl_x*z(%+5,<”(§§§b+)3b>) i
! 2 i (6.9)
T (KSf-x2<z+s,W>(X")) +O<Z)
and

(x+b) (x+3b) ) (3+5)

2 °°( (x-+5b)
E (KSI_X2(;+57(X+b)(x+3b))(Xl')) :/0

(x+5b)

(x+5b)

eXP(—f)

) (3+5) v tb) (x+3b) )

x+5b
L) (1N =1
=~ a2\ 5 -K X X

F(x—i;)Sb)z (2) /0 y 51_x72(2(§+5),<+(ﬁ>+<5b+)3h>)(Y)f(y)dy

=B,E(&; ' f(&).

(6.10)
where &, is the SI_y 2 (2 (5+5), %) distributed random variable and
(X3l 1 5P
B, = % (5) . (6.11)
X
r(<%")

By using Stirling formula I'(z) = v27 exp(—z)zz_% /R(z), where R(z) converges to 1

as z — oo and R(z) < 1 for any z > 0, it is obtained as

B L X 2.15
Then, using Taylor expansion, it gives
E(&'f(&) =x""f(x)+o(b). (6.12)
So,
Var (f(x)) L e ) b ob Y. (6.13)
23/
[
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Then, using bias and variance terms MISE is obtained as

1 (o]
- b_in_l/ x_%f(x)dxﬁ-o <b2+b_%n_1> .
22\ 0

(6.14)

MISE (f(x)) — /Om [f(x) +xf" (x)] dx+

The optimal bandwidth minimizing the MISE obtained above is

* L e b )
bise = | ——— . (6.15)
MISE <2zﬁf0 [f(x)+x ”(x)]zdx

Then, the corresponding optimal MISE can be can be obtained as

wise (709) = (=2 ) ([ rwnae) ([ 1rwesroae) ot

(6.16)

Dl

Also, the optimal bandwidth minimizing the MSE is

. L b Vo
biyse = | — s (6.17)
Mk (22ﬁ[f’(X)+xf”(X)]2> 4

Then, by using the optimal bandwidth, one can obtain the optimal MSE as

MSE (f(x)) - (ﬁ) <x*% f(x)>g [/ () +xf"(x)] 503, (6.18)

K
6.1.1 Simulation study for comparison of MSE’s

1500 replications of sample size n = 500 are generated from Gamma(3,1) distribution
function. The pointwise bias, variance and MSE of Gam2 kernel, BS-PE kernel and
scaled inverse chi-squared kernel estimators are illustrated in Figure (6.1)). From Figure
(6.1), it can be seen that the variance of the kernel estimators reduces when one moves
away from zero. When, x > 4 the MSE of scaled inverse chi squared distribution is

better than others. When x < 4, there are no clear comparison among estimators.

6.2 Numerical Studies for Bayesian analysis with Lindley Approximation

In this section, the average ISE’s of the adaptive Bayesian approach using Lindley
approximation method with the classical LSCV bandwidth selection method are
compared. Moreover, we compare the average ISE’s with those of [29] Bayesian
adaptive approach under quadratic loss function based on BS-PE kernel estimator and

beta prime kernel estimator proposed in previous chapter with bandwidths obtained
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Figure 6.1 : MSE comparison of some kernels.

from Bayesian approach using Lindley approximation. The inverse gamma distribution

is chosen as a prior for the variable bandwidth 4;,

(hi) = % (hi)~* exp (—}%) . (6.19)

where mean and variance of the prior are

[32
(@—1)*(a—2)’

E(h) = a>1, Var(h)= o> 2. (6.20)

The prior parameters are chosen as @ = 2.5 and 8 = 0.1, since E (h;) >0 for 8 >0
and @ > 1, Var(h;) > 0 for B > 0 and o > 2. Note that, in practice, this parameter

values are not necessarily the best choice for obtaining the best smoothing quality.

As in previous chapter, for the densities described below 1000 replications of sample
size 25, 50, 100 are generated and the results are given in Table
1 1

A. Lognormal density: f(x) = v &P <_W (Inx — ,u)2> with parameters(u,A) =
(1,1).

B. Burr density: f(x) = % with parameters (u,A) = (3,1).
X!
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Table 6.1 : Average ISE comparisons of some kernel estimators.

n LSCV_SI CS Lindley_SI_CS BS-PE Beta Prime
A 25 0.0186 0.0141 0.0163 0.0106
50 0.0093 0.0073 0.0097 0.0061
100 0.0046 0.0040 0.0058 0.0036
B 25 0.0398 0.0326 0.0357 0.0277
50 0.0207 0.0187 0.0214 0.0183
100 0.0149 0.0123 0.0134 0.0111
C 25 0.0135 0.0092 0.0094 0.0089
50 0.0108 0.0057 0.0058 0.0054
100 0.0029 0.0027 0.0036 0.0034
D 25 0.0703 0.0648 0.0675 0.0272
50 0.0674 0.0599 0.0600 0.0237
100 0.0589 0.0554 0.0561 0.0215

_ O'Sx“l*lexp(fx) _’_O.Sx”Z*liexp(fx)

C. Mixture of Gamma density: f(x) ) o) With parame-

ters (U, 2) = (2.5,10).

D. Levy density:f(x) = Zl—n% exp (—ﬁ) , X > W, with parameters (1,A) =
(x—p)2
1
0,3)-

Note that, in Table @ LSCV_SI_CS represents the average ISE of scaled inverse chi-
squared kernel estimators with bandwidth obtained from LSCV method, Lindley_SICS
represents the average ISE of scaled inverse chi- squared kernel estimators with
bandwidth obtained from Lindley approximation method, BS-PE represents the
average ISE of BS-PE kernel estimator with bandwidths obtained from Bayesian
adaptive approach under quadratic loss function and Beta Prime represents the
average ISE of beta prime kernel estimators with bandwidth obtained from Lindley

approximation method.

It can be seen from Table|6. 1| that the beta prime kernel estimator gives better estimates
in terms of average ISE for heavy tailed distribution functions. As the sample size n
increases, the average ISEs of the estimators decrease as expected. The average ISE of
scaled inverse chi-squared kernel estimator by using adaptive Bayesian method with
Lindley approximation is smaller than BS-PE adaptive kernel estimator used in [29].

The bandwidths obtained by using adaptive Bayesian with Lindley approximation
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method gives smaller average ISE than the bandwidths obtained from global LSCV

method.

6.3 Real Data Applications

In this section, two data sets are studied. The first data set is daily ozone level
measurements studied in the previous chapter. The second data set was collected to
estimate the abundance of Southern Bluefin Tuna in Great Australian Bight (see [44]]).
It consists of 64 observations on the perpendicular distance (in miles) of tuna schools

to transect line.

In Figure (6.2)), the solid line represents the scaled inverse chi-squared estimator with
bandwidth selected by the adaptive Bayesian method using Lindley approximation and
the dashed line represents the scaled inverse chi-squared estimator with bandwidth
selected by the LSCV method for ozone data. From Figure (6.2) and Figure (6.3)), it
can be said that, the scaled inverse chi-squared kernel with the bandwidths obtained
from the two different method successfully captures modes and bumps of the models,
so it can be considered satisfactory for those data sets. In Figure (6.3)), panel (a) and
(b) represent the scaled inverse chi-squared kernel estimator and beta prime kernel
estimator, respectively. In those panels, bandwidths obtained from adaptive Bayesian
with Lindley approximation and LSCV methods. For the selection of bandwidths by
using adaptive Bayesian with Lindley approximation method, it is chosen that the prior
for bandwidths follows the inverse gamma distribution with parameter values ot = n/3
and B = 0.1 for the scaled inverse chi-squared kernel estimator and beta prime prior
with parameters @ = 1 and 3 = n'/3 are employed for the beta prime kernel estimator.
Panel (c) represents the BS-PE estimator proposed in paper [29] with bandwidths
obtained from Bayesian adaptive approach under quadratic loss function and LSCV
method. In (c), inverse gamma distribution with parameter values o = 2.5 and 8 = 1
are used as a prior for the bandwidths obtained from Bayesian adaptive approach.
According to practitioners the tuna data has a shoulder near the x = O (see [44]]). Panel
(a) showed that, the scaled inverse chi-squared kernel has good performance when f
has a shoulder near zero. On the other hand, the beta prime kernel estimator and BS-PE

kernel estimator are unsuitable for such a data set.
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7. CONCLUSIONS AND RECOMMENDATIONS

In this dissertation the density estimation problem is studied using the delta sequence,
the orthogonal series and the asymmetric kernel methods. First, delta sequence
method is considered. The convergency rate of the MSE of the estimator is obtained
for the densities defined by the second order finite differences. Then, it is shown
that, the convergency rate is faster than the convergency rate of MSE obtained by
using the first order finite differences. Moreover, by writing the conditions on the
density in terms of the second order modulus of continuity type majorants, the general
assumption of second order differentiability is weakened. Secondly, the orthogonal
series method namely Hermite polynomials is considered by using delta sequences. In
this chapter, for the densities which have rth derivatives, the convergency rate of the
MISE of estimators of densities with infinite support by using delta sequences which
are based on the hermite functions is obtained. Then, convergency rate of the MSE
and MISE of the estimator for the densities having compact support is obtained. The
contribution of this work is improving the results of former publications about the rate
of convergence of estimators based on Hermite series. Aforementioned, orthogonal
series density estimate may take on negative values. So, the positivity of the Hermite

series estimators may be a challenging work.

Furthermore, the asymmetric kernel method is studied and the boundary bias problem
are the main interest. A new kernel estimator is proposed by using the asymmetric
beta prime distribution function as kernel. It is shown that, beta prime estimator is free
of boundary bias problem, has variable shape (so its support matches the support of
the density to be estimated) and has the optimal rate of convergence of the MSE and
MISE. Simulation studies indicate that, the beta prime kernel estimator has good finite
sample properties and generally outperforms the kernel estimators proposed before.
Moreover, for the heavy tailed data adaptive Bayesian bandwidth selection method is
used with Lindley approximation. Lindley approximation has not been used before for

the asymmetric kernel estimators. Then, comparisons are made in terms of average
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ISE’s obtained by using adaptive Bayesian Lindley method and obtained by using
LSCV method via simulation studies. The adaptive Bayesian Lindley method exhibits
better results than the LSCV method. Also, the average ISE of beta prime estimators
with bandwidths obtained from adaptive Bayesian Lindley method outperforms the
average ISE of BS-PE estimator despite the fact that it is obtained from the exact
expression for the adaptive bandwidth. Moreover, real data applications illustrate that
beta prime estimators with bandwidths obtained from both adaptive Bayesian Lindley
and LSCV methods have good smoothing quality and captures the modes and bumps
of the models, successfully. So, the proposed model may be useful for the air quality

and hydrological data applications.

Finally, in the last chapter, scaled inverse chi-squared kernel estimator is proposed as
a new asymmetric estimator. Similar to the existing estimators, the proposed kernel
solves the boundary bias problem. For numerical purposes, the MSE comparison
is made with some asymmetric kernel estimators. Moreover, adaptive Bayesian
bandwidth selection method with Lindley approximation is used for the scaled inverse
chi squared kernel estimator. Then, it is shown that, the performance of average ISE
is better when using the bandwidths obtained from the adaptive Bayesian bandwidth
selection method with Lindley approximation method than the bandwidths obtained
from global LSCV method. Real data examples demonstrate that both adaptive
Bayesian method and LSCV has good smoothing quality and capture the modes and
unimodality of the models successfully. Even though the average ISE performance
of the scaled inverse chi-squared estimator is not as good as the beta prime kernel
estimator, Tuna data example illustrates that the scaled inverse chi-squared estimator is
capable to reproduce the shoulder near zero. As a result, it can be used as an alternative
to beta prime kernel estimator for this kind of data sets. The density estimation with
dependent data using asymmetric scaled inverse chi-squared kernel can be studied as

a further study.
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