
ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

LINEAR ALGEBRAIC METHODS FOR MACHINE LEARNING

M.Sc. THESIS

Elif ALTUNOK

Department of Mathematical Engineering

Mathematical Engineering Programme

DECEMBER 2019

ISTANBUL TECHNICAL UNIVERSITY F GRADUATE SCHOOL OF SCIENCE

ENGINEERING AND TECHNOLOGY

LINEAR ALGEBRAIC METHODS FOR MACHINE LEARNING

M.Sc. THESIS

Elif ALTUNOK
(509161286)

Department of Mathematical Engineering

Mathematical Engineering Programme

Thesis Advisor: Prof. Dr. Atabey KAYGUN

DECEMBER 2019

İSTANBUL TEKNİK ÜNİVERSİTESİ F FEN BİLİMLERİ ENSTİTÜSÜ

MAKİNE ÖĞRENMESİ İÇİN DOĞRUSAL CEBİRSEL YÖNTEMLER

YÜKSEK LİSANS TEZİ

Elif ALTUNOK
(509161286)

Matematik Mühendisliği Anabilim Dalı

Matematik Mühendisliği Programı

Tez Danışmanı: Prof. Dr. Atabey KAYGUN

ARALIK 2019

Elif ALTUNOK, a M.Sc. student of ITU Graduate School of Science Engineering and
Technology 509161286 successfully defended the thesis entitled “LINEAR ALGE-
BRAIC METHODS FOR MACHINE LEARNING”, which she prepared after fulfill-
ing the requirements specified in the associated legislations, before the jury whose
signatures are below.

Thesis Advisor : Prof. Dr. Atabey KAYGUN
Istanbul Technical University

Jury Members : Assoc. Prof. Dr. Serkan SÜTLÜ
Işık University

Asst. Prof. Dr. Gül İNAN
Istanbul Technical University

..............................

Date of Submission : 15 November 2019
Date of Defense : 11 December 2019

v

vi

To my family,

vii

viii

FOREWORD

I would like to express my deepest sincere gratitude to my thesis advisor Prof. Dr.
Atabey Kaygun who gave me support and valuable guidance in the process of writing
my thesis. I am also grateful to him for spending his valuable time in giving us machine
learning seminars on the weekends during the year. His experiences that he shared with
us, motivated and paved our way.

I would like to sincerely thank Prof. Dr. Oğuzhan Külekci for giving me the motivation
and the opportunity to do research in his laboratory.

Last but not least, my gratitude also goes to my father, mother, sisters, and friends for
their love and their pray in this process. Thank you all who helped or contributed to
finish my Master’s program.

December 2019 Elif ALTUNOK

ix

x

TABLE OF CONTENTS

Page

FOREWORD... ix
TABLE OF CONTENTS.. xi
ABBREVIATIONS ... xv
LIST OF TABLES ..xvii
LIST OF FIGURES .. xix
SUMMARY ...xxiii
ÖZET ... xxv
1. INTRODUCTION .. 1

1.1 Overview .. 1
1.2 Literature Review ... 2
1.3 Aim of Thesis ... 3
1.4 Thesis Structure .. 3

2. MACHINE LEARNING .. 5
2.1 What Is Machine Learning? ... 5
2.2 Supervised Learning... 6
2.3 Unsupervised Learning... 8
2.4 Semi-Supervised Learning ... 9
2.5 Cross-Validation ... 11

2.5.1 Test and training error... 12
2.5.2 Cross-validation methods ... 13
2.5.3 The right way to do cross-validation .. 15

3. BASIC MACHINE LEARNING ALGORITHMS .. 17
3.1 Logistic Regression .. 17

3.1.1 The logistic model .. 17
3.1.2 Estimating the regression coefficients .. 18
3.1.3 Multiple logistic regression .. 19

3.2 The Bayes Classifier ... 19
3.2.1 Mathematical background .. 20

3.2.1.1 Using Bayes’ Theorem for classification... 20
4. LINEAR ALGEBRAIC METHODS .. 23

4.1 Principal Component Analysis .. 23
4.1.1 Mathematical background .. 23

4.1.1.1 Calculation of the Covariance Matrix.. 23
4.1.1.2 Calculation of the eigenvectors and eigenvalues of the covari-

ance matrix... 25
4.1.1.3 Deriving the new data set... 26
4.1.1.4 Can we get back to the old data? ... 26

xi

4.1.2 The advantages and disadvantages of using PCA 27
4.1.3 Singular value decomposition .. 28
4.1.4 Relationship between PCA and singular value decomposition 28

4.2 Linear Discriminant Analysis... 29
4.2.1 LDA for p = 1 .. 29
4.2.2 LDA for p > 1 .. 31
4.2.3 The advantages and disadvantages of using LDA 32

4.3 Support Vector Machine ... 32
4.3.1 Maximum margin classifier .. 32
4.3.2 SVM soft margin classifier ... 37
4.3.3 The advantages and disadvantages of using SVM 40

5. MATERIALS AND METHODS ... 41
5.1 The Olivetti Faces Data Set .. 41

5.1.1 Data exploration ... 41
5.1.2 Method.. 41

5.1.2.1 Data preprocessing... 41
5.1.2.2 Applying models.. 41

5.2 Fashion-MNIST Data Set ... 42
5.2.1 Data exploration ... 42
5.2.2 Method.. 42

5.2.2.1 Data preprocessing... 42
5.2.2.2 Applying models.. 42

5.3 MADELON Data Set ... 44
5.3.1 Data exploration ... 44
5.3.2 Method.. 44

5.3.2.1 Data preprocessing... 44
5.3.2.2 Applying models.. 45

6. RESULTS .. 47
6.1 The Olivetti Faces Data Set .. 47
6.2 Fashion-MNIST Data Set ... 51
6.3 MADELON Data Set ... 58

7. CONCLUSION AND RECOMMENDATIONS .. 63
7.1 Future Work.. 64

REFERENCES.. 65
APPENDICES... 71

APPENDIX A.1 ... 73
1.1 Olivetti Faces Data Set ... 73

1.1.1 Data preprocessing ... 73
1.1.2 Applying models .. 73

APPENDIX A.2 ... 75
1.2 Fashion-MNIST Data Set ... 75

1.2.1 Data preprocessing ... 75
1.2.2 Applying models .. 75

APPENDIX A.3 ... 78
1.3 MADELON Data Set ... 78

xii

1.3.1 Data preprocessing ... 78
1.3.2 Applying models .. 78

CURRICULUM VITAE... 81

xiii

xiv

ABBREVIATIONS

ANOVA : Analysis of Variance
ARM : Association Rule Mining
CCA : Canonical Correlation Analysis
CV : Cross Validation
EVD : Eigenvalue Decomposition
EOF : Empirical Orthogonal Functions
GCV : Generalized Cross-Validation
ICA : Independent Component Analysis
KKT : Karush-Kuhn-Tucker
KPCA : Kernel Principal Component Analysis
LDA : Linear Discriminant Analysis
LR : Logistic Regression
LOOCV : Leave-One-Out-Cross-Validation
MCA : Multiple Correspondence Analysis
NDA : Normal Discriminant Analysis
PCA : Principal Component Analysis
POD : Proper Orthogonal Decomposition
QDA : Quadratic Discriminant Analysis
SVD : Singular Value Decomposition
SVM : Support Vector Machine
TSVM : Transductive Support Vector Machines

xv

xvi

LIST OF TABLES

Page

Table 5.1 : Number of observations of the training set, the validation set and
the test set of MADELON data set. .. 45

Table 6.1 : The table shows the results of the LDA model fitted the Olivetti
faces data set for different dimensions. The optimal LDA model is
highlighted. ... 48

Table 6.2 : SVM results with difference type of kernels on the Olivetti faces
data set. The optimal SVM model is highlighted. 48

Table 6.3 : SVM with PCA results on the Olivetti faces data set. The best
performance of each kind of model has been highlighted in the table. 52

Table 6.4 : A comparison of the performance of the SVM with different types
of kernel functions on the reduced Olivetti faces data set by PCA..... 52

Table 6.5 : Table of the models which have the best performance in their
methods. .. 53

Table 6.6 : The table shows the results of the LDA model fitted the
Fashion-MNIST data set for different dimensions. The optimal
LDA model is highlighted... 53

Table 6.7 : SVM results with difference type of kernels on the
Fashion-MNIST data set. The optimal SVM model is highlighted.... 54

Table 6.8 : SVM with PCA results on the Fashion-MNIST data set. The best
performance of each kind of model has been highlighted in the table. 55

Table 6.9 : A comparison of the performance of the SVM with different types
of kernel functions on the reduced Fashion-MNIST data set by PCA. 55

Table 6.10 : Table of the models which have the best performance in their
methods on the Fashion-MNIST data set.. 58

Table 6.11 : The table shows the results of the LDA model fitted the
MADELON data set for different dimensions. The optimal LDA
model is highlighted.. 59

Table 6.12 : SVM results with difference type of kernels on the MADELON
Data Set. The optimal SVM model is highlighted.............................. 59

Table 6.13 : SVM with PCA results on the MADELON data set. The best
performance of each kind of model has been highlighted in the
table... 61

Table 6.14 : A comparison of the performance of the SVM with different types
of kernel functions on the reduced MADELON data set by PCA...... 61

xvii

Table 6.15 : Table of the models which have the best performance in their
methods on the MADELON data set. ... 61

xviii

LIST OF FIGURES

Page

Figure 2.1 : In this clustering data set, each group is shown in different colors.
The left plot shows the well separated groups. Clustering in these
groups will be successful. The right plot shows there is some
overlap among the groups. In this case, it is more difficult to
cluster. [1, Chapter 2.1.4].. 10

Figure 2.2 : The behavior of test error and training error according to the
change of the model complexity. The training error err indicated
by blue curve, and the conditional test error Errτ indicated by red
curve. The solid curves also indicate the expected test error Err
and the expected training error E[err]. There are simulated 100
training sets each of size 50 [2, Chapter 7.2]. 11

Figure 2.3 : A typical split of the data into three parts which are 50% for
training, 25% for validation and the remaining 25% for testing......... 13

Figure 2.4 : In 5-fold cross-validation, the data set is randomly splitted into 5
equal sized subsets. .. 14

Figure 2.5 : Cross-validation set approaches .. 15
Figure 3.1 : The data points are simulated in different groups, shown in blue

and in orange. Bayes decision boundary is shown in purple dashed
line. [1, Chapter 2.2.3] .. 20

Figure 4.1 : A simple illustration of a kind of two-dimensional data on the
top left panel. The plot of transformed data applying PCA is
shown on the right top panel. The bottom left panel shows the
data after apply PCA keeping only first principal component. The
bottom right panel shows the illustration of the reconstruction data
using only the most significance component. We used the Mglearn
library to plot this illustration. .. 24

Figure 4.2 : The left figure shown is the margin. The right figure shown
that the decision boundary found by maximizing the margin.
The location of this boundary is determined by support vectors
by maximizing margin. The indicated points by circles are the
elements of the subset of the data points, that uses to determine
the support vectors. [3, Chapter 7.1.].. 33

Figure 4.3 : The decision surface is shown by the red line, is perpendicular
to w, and its displacement from the origin is controlled by the
parameter w0. The perpendicular distance of a point x to the
decision boundary is given by y(x)/||w||. [3, Chapter 4.1.1.]............. 34

Figure 4.4 : Illustration of the slack variables ξn ≥ 0. Data points with circles
around them are support vectors. [3, Chapter 7.1.1]........................... 40

Figure 5.1 : A preview a few images of the Database of Faces 43

xix

Figure 5.2 : The faces of 40 distinct people with corresponding target in the
data set .. 43

Figure 5.3 : A preview a few images of the Database of Fashion-MNIST 43
Figure 5.4 : Clusters of MADELON data set at a glance...................................... 45
Figure 6.1 : A comparison the SVM with different types of kernel functions

on the Olivetti faces data set. .. 48
Figure 6.2 : The left figure shows the plot with two features of the original

Olivetti faces data set. The right figure shows the plot of the
transformed data into two-dimensional space by PCA. Thus, the
data points on the diagonal have been rotated into the xy axis (i.e.
principal components) that maximizes the variance. 49

Figure 6.3 : The left figure shows the plot with two features of the original
Olivetti faces data set. The right figure shows the plot of
transformed data into two-dimensional space that is the directions
(i.e. linear discriminants) represents the axes that maximize the
separation between classes by LDA.. 50

Figure 6.4 : Plot of the first and second components choosing by 2D-PCA
with their explained variance. The characteristics of the faces
corresponding to the two components are different from each other.. 50

Figure 6.5 : The image shows the average face of the peoples in the Olivetti
faces data set. The mean face computed by 50D-PCA....................... 50

Figure 6.6 : A comparison of the accuracy of the SVM with different types of
kernels on the reduced data by PCA on the Olivetti faces data set..... 52

Figure 6.7 : Accuracy and run time comparison for the best models on the
Olivetti faces data set. ... 53

Figure 6.8 : A comparison the SVM with different types of kernel functions
on the Fashion-MNIST data set. ... 54

Figure 6.9 : A comparison of the accuracy of the SVM with different types of
kernels on the reduced data by PCA on the Fashion-MNIST data set. 56

Figure 6.10: The left figure shows the plot with two features of the original
Fashion-MNIST data set. The right figure shows the plot of the
transformed data into two-dimensional space by PCA. Thus, the
data points on the diagonal have been rotated into the xy axis (i.e.
principal components) that maximizes the variance. 56

Figure 6.11: The left figure shows the plot with two features of the original
Fashion-MNIST data set. The right figure shows the plot of
transformed data into two-dimensional space that is the directions
represents the axes that maximize the separation between classes
by LDA. .. 56

Figure 6.12: Plot of the first and second components choosing by 2D-PCA
with their explained variance. The first component looks like such
a tshort/top or a shoe and the second component looks like kind of
a trouser or a tshort/top. .. 57

Figure 6.13: The image shows the average fashion item of the all images in the
Fashion-MNIST data set. The mean image computed by 50D-PCA. 57

Figure 6.14: Accuracy and run time comparison for the best models on the
Fashion-MNIST data set. .. 58

xx

Figure 6.15: Visualizing the data points in the 3D-hypercube............................... 59
Figure 6.16: A comparison the SVM with different types of kernel functions

on the MADELON data set... 60
Figure 6.17: A comparison of the accuracy of the SVM with different types of

kernels on the reduced data by PCA on the MADELON data set. 60
Figure 6.18: Accuracy and run time comparison for the best models on the

MADELON data set. .. 62

xxi

xxii

LINEAR ALGEBRAIC METHODS FOR MACHINE LEARNING

SUMMARY

In this thesis, we investigate mathematical foundations of commonly used linear
algebraic methods in machine learning: Principal Component Analysis (PCA),
Linear Discriminant Analysis (LDA), and Support Vector Machines (SVM). We also
demonstrate their performances on the Olivetti Faces data set [4], Fashion-MNIST data
set [5] and MADELON [6] data set. We present a comparative study on challenging
clustering and classification problems on these data sets using the linear algebraic
methods we listed above.

One of the contributions of this thesis is to present a comprehensive and 2-way
statistical comparison of different models on different data sets. In one direction, we
used different types of models on the same data set for comparison purposes, while
in the other direction we compared the performance of a chosen method on different
data sets. We also evaluated the performances of the models by varying the chosen
parameters on each data set.

Our result indicate that varying number of dimensions did not affect the accuracy
of LDA, and LDA showed the same performance across all data sets, even in 2
dimensions. However, models performances have changed from data set to data set.
In our experiments we obtained that the Olivetti face data set yielded an accuracy
score of 97%, while on the Fashion-MNIST data set the score reduced to 82%. The
MADELON was on the other hand yielded the worst performance with an accuracy of
55%.

In SVM, we used four different kernel functions: linear, radial basis, polynomial and
sigmoid. The results we obtained showed that the type of kernel function chosen has
considerable effect on the performance of the model. For example, the linear kernel
gave excellent recognition accuracy of 94%, while the polynomial kernel had a limited
accuracy of 58% on the Olivetti faces data set.

When the methods we investigate in this thesis are combined, in some cases, they
produce far better results when they were used on their own. For example, on the
Olivetti face set, the accuracy of the SVM with linear kernel after we reduced the data
set to 30 dimensions using PCA had an accuracy score of 97%, approximately the
same as the 2-dimensional LDA model. However, PCA-SVM combination yielded 15
times faster results. It should be noted that the LDA method is also 15 times better in
terms of reducing the file size.

We achieved with an accuracy of 82% in 6.76 seconds using a 2-dimensional LDA
model, and 89% accuracy in approximately 31 minutes using the SVM with RBF
kernel on the Fashion-MNIST data set. Thereafter, we applied the SVM with RBF
kernel on reduced the data to 15 dimensions by PCA accelerated the process 29 times

xxiii

by obtaining an accuracy score of 85%. However, the 2-dimensional LDA method is
still about 10 times faster and saved about 7 times more space.

We also found that with an accuracy of 58% in 3.29 seconds using SVM with RBF
kernel on the MADELON data set. Afterward, we applied SVM with RBF kernel
on the reduced data set by PCA from 500 to 5 dimensions. Results showed that by
using the combined method PCA with SVM, the data points were classified with an
accuracy of 81% in 0.08 seconds that was approximately 40 times faster than SVM
alone. Moreover, we have achieved a reduction in file size by 99%.

xxiv

MAKİNE ÖĞRENMESİ İÇİN DOĞRUSAL CEBİRSEL YÖNTEMLER

ÖZET

Bu tezde, makine öğrenmesi algoritmalarında sıklıkla kullanılan doğrusal cebirsel
yöntemlerin matematiksel temellerini analiz ettik ve Temel Bileşen Analizi (PCA),
ikinci olarak Lineer Ayrimcılık Analizi (LDA) ve son olarak Destek Vektor Makineleri
(SVM) yöntemlerini inceledik. Sonra da bu yöntemlerin performanslarını farklı veriler
üzerinde test ettik.

Makine öğrenmesi, belirli bir görevi tamamlamak için göreve ait geçmiş deneyimlerin
veya örnek verilerin kalıplarını keşfederek modeller oluşturan ve bu modellerle
tahminler yapıp karar almaya yarayan bir süreç olarak özetlenebilir. Makine öğrenimi,
e-posta filtrelemeden yüz tanımaya kadar birçok farklı alandaki sorunları çözmek için
yaygın olarak kullanılmaktadır. Hatta makine öğrenimi algoritmaları veri hakkında
bir bilginin olmadığı ya da az bilginin olduğu durumlarda da kullanılabilir. Ancak
uygulayıcının eldeki yöntemden en iyi performansı alabilmesi için bir takım karar
basamaklarından geçmesi gerekmektedir. Burada uygulayıcının veri kümesini hangi
ön işlem basamaklarından geçirmesi, problem için hangi yöntemi seçmesi ve hatta
seçtiği yöntemle modeli oluştururken hangi parametreleri kullanması gerektiğine karar
vermesi gerekir. Bu karar basamakları uygulanan modelden en iyi performansı
alabilmek için bir temel olarak ele alınabilir.

Literatürde halihazırda bir çok farklı yöntem mevcut olması sebebiyle yöntem
seçim işlemi zor olabilir. Makine öğrenmesi süreçlerinde yöntem seçildikten sonra
oluşturulacak modelden en iyi performansın alınabilmesi için model parametrelerinin
doğru tayin edilmesi büyük önem taşımaktadır. Bu sebeble modelin performansının
seçilen parametre değerlerine göre nasıl değiştiğinin istatistiksel olarak saptanması
gereklidir. Burada uygulayıcının önemli gorevlerinden birisi modele en uygun
parametrelerin seçimi için model sonuçlarını istatistiksel olarak analiz etmesidir.
Bu istatistiksel bakış açısı, iyi bir öngörü sağlayarak modelin en iyi biçimini
kullanmamızın yolunu bize daha hızlı açacaktır. Bu nedenle değişik veri kümesi
üzerinde uygulanan değişik makine öğrenimi yöntemleri ile elde edilen modellerin
performanslarının karşılaştırıldığı bir çalışmanın yararlı olacağını düşünüyoruz.

Temel Bileşen Analizi, veri kümelerindeki örüntülerin tespitinde, öznitelik çıkarmada,
ve veri kümesinin boyutunu küçültmede yaygın olarak kullanılan denetimsiz bir
öğrenme yöntemidir. Yöntem, veri kümesindeki bilgilerin çoğunu koruyarak çok
boyutlu verileri daha düşük boyutlara indirmek için kullanılır. Bu işlemi veri
kümesindeki en yüksek değişkenliğe sahip olan bileşenleri veri kümesinde tutup, az
değişkenliğe sahip olan bileşenleri çıkartarak yapar. Bunu yapmak için veri kümesine
ait kovaryans matrisi ve bu matrisin özdeğerlerini bularak ilerler. Bu özdeğerler
bize bu özdeğerlere karşılık gelen özvektörler boyunca uzanan veri noktalarında ne
kadar varyans olduğunu söyler. Bu şekilde özdeğerler sıralandığında karşılık gelen

xxv

özvektörlerdeki veri bilgisinin de önem sırası belirlenmiş olur. Buradan hareketle en
büyük özdeğere karşılık gelen özvektör veri kümesinin temel bileşeni olacaktır. En
küçük özdeğerler boyunca bulunan bileşenler boyut sayısını azaltma amacıyla veri
kümesinden çıkartılabilir. Bu yöntem örüntü tanımadan yüz tanımaya kadar farklı
uygulamalarda sıklıkla kullanılmaktadır. Bu tezde bu yöntemle veri kümeleri farklı
boyutlara indirgenip, ardından destek vektör makineleri yöntemiyle sınıflandırılmıştır.

Lineer Ayrımcılık Analizi (LDA), veri kümesinin boyutunu küçültmede, öznitelik
çıkarımında, örüntü sınıflandırmada ve çok sınıflı sınıflandırma görevleri için
sıklıkla kullanılan denetimli bir öğrenme yöntemidir. Yöntem, sınıf ayrılabilirliğini
maksimuma çıkartmayı amaçlayacak şekilde bir öznitelik altuzayı bulmayı amaçlar.
LDA veri kümesindeki gözlemlerin sınıflara ait olma olasılıklarını belirlemek için
Bayes Teoremini kullanır ve ayrım fonksiyonu bulur. Bulduğu ayrım fonksiyonunda
gözlemin aldığı değeri her bir sınıf için hesaplayarak bu değerlerin en büyüğüne
göre noktanın sınıf atamasını yapar. Bu tezde LDA yöntemi ile veri kümeleri
farklı boyutlara indirgenip sınıflandırılmış ve farklı parametrelerin verdiği sonuçlar
karsılaştırılmıştır.

Destek vektör makineleri (SVM), sınıflandırma ve regresyon analizi için kullanılan
denetimli bir öğrenme yöntemidir. Bu yöntem, yüz tanımadan zaman serisi
tahminlerine kadar birçok farklı uygulamada kullanılmaktadır. SVM’in amacı veri
setimizi sınıflandırma için ayrık altkümelere bölen bir dizi optimal hiper düzlemi
bulmaktır. Buradaki hiper düzlem farklı sınıfların veri noktaları arasındaki mesafeyi
maksimize edecek şekilde seçilmektedir. Yöntemde saptanan destek vektörler
arasındaki mesafe marjin olarak adlandırılır. Her zaman doğrusal olarak iki sınıfı
birbirinden ayırmak mümkün olmayabilir. Bu yöntem doğrusal olarak çalışmasına
rağmen doğrusal olarak ayrılayaman veri kümelerinde de çekirdek hilesini kullanarak
başarılı bir şekilde sınıflandırma yapabilir. Bu yaparken geri planda doğrusal olmayan
çekirdekler kullanarak veri kümesini bulunduğu boyuttan daha üst boyutlara çıkartıp
yeni uzaya özgü lineer bir çekirdek kullanarak yapar. Yaygın olarak kullanılan ve bu
tezde de kullandığımız çekirdek fonksiyonları, doğrusal, radial tabanlı, polinomiyal
ve sigmoid olarak sıralanabilir. Bu tezde bu fonksiyonların hepsi için modellerin
performansları mukayese edilmiştir.

Bu tez çalışmasında, yüz tanıma problemi için Olivetti yüz kümesini, çoklu
sınıflandırma problemi için Fashion-MNIST veri kümesini ve ikili sınıflandırma
problemi için MADELON veri kümesini kullandık.

Olivetti yüz veri kümesi 40 farklı insanın 10’ar adet farklı yüz pozlarını içeren toplam
400 adet görüntüden oluşmaktadır. Görüntüler ışıklandırma, yüz ifadeleri, gözük
detayı gibi farklı özelliklerle birlikte farklı zamanlarda, aynı homojen arka planda,
pozisyonlarda ve labaratuar ortamında çekilmiştir. Buradaki amacımız yüz tanıma
yaparak, görüntüleri 40 farklı sınıftan birisine atayarak kime ait olduğunu tespit
etmektir.

Fashion-MNIST veri kümesi 70,000 adet hazır giyim parçası görüntülerinden
oluşmaktadır. Veri kümesinde 10 çeşit giyim ürününün görüntüleri bulunmaktadır.
Buradaki amacımız bu görüntülerin hangi giyim ürünü olduğunu belirlemektir.

Son olarak, yüksek derecede doğrusal olmayan, çok değişkenli ve yapay olan
MADELON veri kümesini kullandık. Veri kümesi +1 ya da -1 sınıfına karşılık gelen
2200 adet pozitif ve 2200 adet negatif veri noktalarından oluşmaktadır. Bu veri

xxvi

noktaları 5 boyutlu hiperküpün 32 köşesinde gruplanmıştır. Buradaki amacımız veri
noktalarına ikili sınıflandırma yapmaktır.

Bu tezde bu üç farklı veri kümesi üzerinde bahsettiğimiz metodları kullanarak
toplam 93 farklı model geliştirdik. Tez çalışması boyunca her bir veri kümesi için
yukarıda bahsettiğimiz yöntemleri kullanarak farklı modeller oluşturduk. Bu sayede
her bir metodun performansını farklı problemler için değişen veri kümeleri bazında
gözlemleyebildik. Aynı zamanda, her veri kümesi için modeldeki parametrelerin farklı
değerlerinin modelin performansını nasıl etkilediğini de sergiledik.

Modellerimizin sonuçlarını özetleyecek olursak, öncelikle çok boyutlu olan veri
kümelerini LDA yöntemiyle farklı boyutlara indirgeyerek sınıflandırma işlemlerini
yaptık. Daha sonra her veri kümesi için SVM yöntemini farklı çekirdek fonksiyon-
larıyla kullanarak modellerimizi oluşturduk. Son yaklaşımımız ise veri kümelerimize
PCA uygulayarak onları farklı boyutlara indirgeyip, sonrasında sınıflandırma işlemi
için yine SVM’i farklı çekirdek fonksiyonlarıyla birlikte kullanmak oldu.

Yaptığımız deneylerle metodların farklı veri kümelerinde farklı performans göster-
diğini gözlemledik. Değişen boyut sayısı LDA’in doğruluk oranını etkilemedi: LDA
2 boyutta dahi aynı performansını tüm veri kümelerinde gösterdi. Örneğin, 2 boyutlu
LDA Olivetti yüz veri kümesinde %97, benzer dinamikte olan Fashion-MNIST veri
kümesinde %82 doğruluk oranı verirken MADELON veri kümesinde %55 olan
doğruluk oranıyla diğer veri kümelerinin oldukça gerisinde kaldı.

SVM yöntemiyle geliştirdiğimiz modellerde ise değişen çekirdek fonksiyonlarının
performansı etkilediğini saptadık. Örneğin, Olivetti yüz veri kümesinde doğrusal
çekirdek fonksiyonuyla SVM %94 doğruluk oranıyla 1,27 saniyede sonuç verirken,
polinomiyal çekirdek fonksiyonu %58 doğruluk oranıyla 1,35 saniyede oldukça kötü
bir sonuç sergiledi.

Daha sonra, yine SVM yönteminde farklı çekirdek fonksiyonlarını kullanarak bu
kez PCA ile farklı boyutlara indirgediğimiz veri kümeleri üzerinde sınıflandırma
işlemini gerçekleştirdik. Bu sayede, hem PCA yönteminin boyut indirgemede farklı
sayıdaki bileşenlerle performansını sonrasındaki sınıflandırma işlemi için gözlemleme
imkanına sahip olurken hem de SVM yönteminin performansını desteklemeyi
amaçladık. Gerçekten de SVM yöntemini LDA ile kıyaslandığımızda çok yavaş
bir yöntem iken, PCA uygulanmış veri kümesi üzerinde SVM uyguladığımızda
oldukça hızlandı, hatta geliştirdiğimiz onlarca modelde yer yer bu kombinasyonun
LDA yönteminden daha hızlı çalıştığını gözlemledik. Üstelik SVM’i tek başına
kullandığımız modellerdeki doğruluk oranlarından daha iyi sonuçlar elde edebildik.
PCA ile verimizin boyutunu indirgediğimiz için dosya boyutundan da tasarruf
edebilme imkanımız oldu. Örneğin, MADELON veri kümesinde SVM’i tek başına
kullanarak polinomiyal çekirdek fonksiyonu ile en iyi sonucu %61 doğruluk oranı ve
3,08 saniye çalışma süresiyle almıştık. PCA ile veri kümesini 500 boyuttan 5 boyuta
indirgeyip yine RBF çekirdek fonksiyonuyla SVM uyguladığımızda %81 doğruluk
oranı ve 0,08 saniye çalışma süresiyle yaklaşık 38 kat daha hızlı sonuç alabildik.
Üstelik dosya boyutunda %99 oranında bir küçülme sağladık. PCA uygulanmış
veri kümeleri üzerinde SVM uyguladığımız modeller ile LDA yöntemini mukayese
ettiğimizde aldığımız sonuçlar yine veri kümelerine göre değişkenlik gösterdi.

MADELON veri kümesinde LDA yönteminin iyi çalışmadığından bahsetmiştik.
Olivetti yüz kümesinde en iyi sonucu aldığımız PCA-SVM kombinasyonu ile en

xxvii

iyi sonuç aldığımız LDA modelini karşılaştıracak olursak 2 boyutlu LDA ile 30
boyutlu PCA ve doğrusal çekirdekli SVM modellerinin doğruluk oranları %97 ile
aynı çıktı. Ancak PCA-SVM kombinasyonu 15 kat daha hızlı sonuç verdi. Burada
LDA yönteminin de dosya boyutunu küçültme açısından 15 kat daha iyi olduğu
unutulmamalıdır.

Fashion-MNIST veri kümesindeki en iyi LDA ve en iyi PCA-SVM kombinasyonu ile
sonuç aldığımız modelleri karşılaştıracak olursak, 2 boyutlu LDA’de %82 doğruluk
oranını 6,76 saniyede alırken, PCA ile veri boyutunu 784 boyuttan 15 boyuta indirip
RBF çekirdek fonksiyonlu SVM modeliyle %85 doğruluk oranını 64,70 saniyede
alabildik. Her ne kadar tek başına RBF çekirdek fonksiyonu kullanarak %89 doğruluk
oranını 31 dakikada elde ettiğimiz veriye 15 boyutlu PCA uygulayarak işlemi 29 kat
hızlandırıp %85 doğruluk oranı sağlayabilsek de, 2 boyutlu LDA yöntemi hala yaklaşık
10 kat hızlıydı ve yaklaşık 7 kat daha fazla alan tasarrufu sağlıyordu.

Oluşturduğumuz 93 farklı modellerden hareketle çıkarttığımız ortak sonuç, yöntem-
lerin başarısının veri kümelerine bağlı olarak değişmesi ve yöntemleri kullanarak
oluşturduğumuz modellerin başarısının da kendi içerisinde seçilen parametre
değerlerine bağlı olarak değişmesi oldu. Ayrıca modelden beklentimizin ne olduğuna
göre seçim yapmanın da önemini gözlemledik; çünkü farklı yöntemler kullanarak
hemen hemen aynı doğruluk oranlarını yakaladığımız modellerden birisi daha
hızlıyken bir diğeri verimizin boyutunu daha fazla düşürerek bize daha fazla alan
kazandırabildi.

xxviii

1. INTRODUCTION

1.1 Overview

Machine learning is a collection of practices with a particular goal of creating a

computational models from past experiences in the form of sample data to discover

patterns, or a solution for a given task. The fitted model may then be used to make

predictions for future observations. Machine learning has been widely used both

in academia and industry to solve a wide range problems in many different areas

from e-mail filtering to face recognition. It can even be used when we have little

to no idea what the internal structure of the data set at hand is. However, to get the

best results, the practitioner would still need to go through certain decision-making

steps such as deciding on how to pre-process the data set, choosing a suitable model,

setting the correct parameters as a starting point for building models with acceptable

performance and cost characteristics. As many different models are currently available

in the literature, their selection can be challenging, and for this reason, experimenting

with different models on the same data set is a quite useful practice.

It is important to note that choosing parameters correctly leads to better performance

for the chosen model. In order to set the right parameters, we need to see any changes

in the performance of the model with each selection of the parameters. Hence, an

important task for any practitioner is analyzing the performance of a model statistically

to extract the most suitable parameters effectively that generates the most suitable

model for the data set at hand. In order to be able to do these in the most effective

way, it is necessary to investigate mathematical and statistical foundations of machine

learning algorithms. Having a firm grasp of the theoretical foundations will give us a

better control in which methods to use and how to use them for the problem at hand.

1

1.2 Literature Review

Principal component analysis (PCA) is an unsupervised learning method used in

dimensional reduction, and pattern recognition. It has been used in many different

applications such as face recognition [7–9], human-made object recognition [10], hand

writing recognition [11], mobile robotics [12], and industrial robotics [13]. PCA also

can also be combined with many different machine learning methods such as factor

analysis, canonical correlation analysis (CCA), correspondence analysis, K-means

clustering, non-negative matrix factorization.

PCA is first formulated by Pearson [14] in 1901 to find “lines and planes of closest

fit to systems of points in space”. Fisher and MacKenzie [15] observed that PCA

is a successful approach to modeling of response data. The version of the PCA

method commonly used was developed by Hotelling [16] in the 1930s. It found use

in different scientific fields in solving a wide range of problems such as singular value

decomposition [17, 18] and eigenvalue decomposition (EVD) [19] in linear algebra,

Karhunen-Loeve expansion [20] in electrical engineering, Eckart–Young theorem

(Harman, 1960) [21], or empirical orthogonal functions (EOF) [22] in meteorological

science, proper orthogonal decomposition (POD) [23] in mechanical engineering. One

can find a thorough statistical analysis of the subject in Gnanadesikan [24], Mardia et

al. [25], Johnson and Wichern [26] and Joliffe [27].

Linear discriminant analysis (LDA) is a supervised learning method that most widely

used for statistical pattern classification, dimensional reduction, feature extraction

and multi-class classification. The LDA method also known as normal discriminant

analysis (NDA) or discriminant function analysis, a generalization of Fisher’s linear

discriminant. LDA is an alternative method to PCA that maximizes class separability.

LDA in many ways forms is related to other methods such as analysis of variance

(ANOVA), regression analysis, logistic and probit regression, factor analysis and

principal component analysis. LDA has been used in many different applications

such as face recognition [28], image retrieval [29], micro array data classification [30],

mobile robotics [31], bankruptcy prediction [32], earth science [33] and biomedical

2

studies [34]. LDA was first developed by Fisher [35] in 1936. In this thesis, our main

reference is [1] for the use of linear discriminant analysis in machine learning.

Support vector machine (SVM) is a supervised learning method used for classification

and regression analysis. SVM has been used in many different applications such as

recognition [36,37], shallow semantic parsing [38], image segmentation [39], medical

decision support [40], and time series prediction [41]. SVM was first introduced by

Vapnik and Chervonenkis [42] in 1963, and then by Boser, Guyon and Vapnik extended

SVM to non-linear classifiers by improving the kernel trick it in 1992 [43]. Cortes

and Vapnik further improved on SVM to its present form by adding soft margin [44].

Veropoulos [45] have been successfully applied SVM to biological data processing for

medical diagnosis. Tefas [46] has shown that an SVM model using a kernel based

on Fisher Linear Discriminant performs better than a standard linear SVM for a face

recognition. We use [3] by Bishop for our analyses of SVM presented in this thesis.

1.3 Aim of Thesis

The objective of this thesis is to investigate the mathematical foundations of three

main linear algebraic methods used in machine learning: PCA, LDA and SVM. We

then use these methods to create models on different data sets, and then to compare

their performances. We observed that the performances of the models we obtain vary

depending on the data set, and did a 2-way comparison of the performances: across

data sets and across different methods.

1.4 Thesis Structure

This thesis is organized in seven chapters. In Chapter 1 we present an overview of the

thesis, do our literature survey, present the aim of our thesis, and the thesis structure.

Chapter 2 provides an overview of machine learning and introduce supervised,

unsupervised and semi-supervised learning, and cross-validation that will be used in

the thesis.

In Chapter 3 we cover the basic machine learning algorithms logistic regression and

Bayes classifier that we used this thesis. In Chapter 4 cover the theory of linear

algebraic methods PCA, LDA and SVM. In Chapter 5 we presented the data sets

3

and methods we use in this thesis. In Chapter 6, we presented and discussed the

experimental results. Finally, in Chapter 7, we presented conclusions of our research

and the suggestions for further study.

4

2. MACHINE LEARNING

2.1 What Is Machine Learning?

In this Section we primarily use [47, Chapter 1.1] and also use [2, Chapter 1] and [3,

Chapter 1].

Machine learning can be summarized as completing a task, or making predictions

or decisions based on available data using computational methods and algorithms.

Machine Learning methods are particularly useful when we are faced with complex

tasks that we cannot solve directly by writing computer programs based on preset rules.

Machine learning effectively uses mathematics and statistics to build an algorithmic

models to solve a problem. We use such models to implement solutions written as

computer programs. In such cases where there is no way to create a direct model, we

need sample data or experience for the computer to learn.

There are two main reasons why we might prefer using machine learning. The first

is the absence of human expertise, or the inability of people to explain their expertise.

For instance, we can easily recognize spoken speech and convert the acoustic speech

signal into ASCII text. But explaining how we do cannot be done easily. People of

different ages, genders, and geographic regions pronounce the same words differently.

The machine learning approach in such a task is to collect a large sample utterances

from different people and learn to match words with them.

The other main reason why machine learning would be preferable in solving a problem

is when the problem changes over time, or when the problem depends on a particular

environment. Instead of writing different programs for each change of circumstances

for dynamic problems, we can create a general purpose system that can adapt to all

changes using machine learning. For example, let us consider the problem of routing

packets managed over a computer network. In this example, the optimal path for a

packet sent over the network is constantly changing as the network traffic on the path

5

changes. Therefore, the model needs to update itself continuously and adapt to the best

path.

An algorithm is a sequence of instructions that should be carried out to transform an

input to an output. However, in some tasks an explicit algorithm may not be given.

For instance, we do not use an algorithm to distinguish spam e-mails from legitimate

e-mails. In this example, the input is an e-mail document. The output we need is a

label: spam or non-spam. In fact, we do not know how to transform the input into

output. In addition, spam changes over time, or may vary from person to person. In

the absence of such information, we make up for this lack of explicit algorithm with

data. First, we compile thousands of sample messages, some of them we know are

spam and then we learn from this data what constitutes as spam. The computer then

can extract the most suitable parameters for a statistical algorithm that solves this task

automatically. Since we cannot know which person does not want which e-mail, we

cannot write code directly on a preset collection of rules that sorts e-mails as spam and

not-spam. What we do here is to collect the data and hope that the computer will do

it correctly. While we do not know the explicit details of the process underlying the

detecting spam emails, we also know that this process is not entirely random. Machine

learning focuses on detecting certain patterns or regularities in the data to understand

the process, and then comes up with the most suitable parameters for a statistical

sorting process. Although we do not know these parameters beforehand, and the result

may not be 100% accurate, we expect to create a good and useful approximation. This

approach can take some of the data into account, even if it does not explain everything.

The patterns may help to understand the process and make predictions.

2.2 Supervised Learning

In supervised learning we build a statistical model for estimating, or predicting the

response variables from each observations using a model based on examples where a

response is given to each example data point. In this setup, we have input variables

xi where i = 1, . . . ,n for each data point of the predictor measurement along with

their corresponding response measurement yi. A predictor variable is also called as

an independent variable, or as an input variable. Predictor variables explain changes

for a particular response in a data set. Response variable refers to the variable that

6

measured using a predictor variable. The goal of the supervised learning is to fit a

model for approximate the mapping function to predict the response variable y for

future points or to find the relationship between the response and the predictors.

There are many different methods in supervised learning, the most common are:

• Linear Regression: Linear regression finds the best fitting linear equation in order

to predict a quantitative response variable. If there is only one predictor and one

response variable, then the method is called univariate or simple linear regression,

and when the number of predictors is greater than one, it is called multivariate

linear analysis. For details see [1, Chapter 3].

• Logistic Regression: Logistic regression is a statistical method that models a binary

dependent variable using a logistic function. Logistic regression does not directly

model the response variable Y, this method models the probability that Y belongs

to a particular category. See Section 3.1.

• Linear Discriminant Analysis (LDA): LDA is a dimensionality reduction method

for classification problems. LDA finds linear combinations of features to explain

the data. This method works by modeling the difference between data classes. See

Section 4.2.

• Support Vector Machines (SVM): SVM is a machine learning model that is used

for both classification and regression analysis. SVM finds an optimal hyperplane

that separates classes. See Section 4.3.

• K-Nearest Neighbors: This is a classification method where for a given a positive

integer k, we find (in the best case) k-cluster centroids from the training data set,

and then we determine the class of a new given data point depending on the closest

centroid. For details see [1, Chapter 2.2.3].

• Naive Bayes: The naive Bayes classifier is based on the Bayes’ Theorem and

the maximum posterior estimation. This classifier is the simplest instance of a

probabilistic induction. The method assumes that the features are independent in

a data set to simplify learning. So that, this learning method is fast and easy to

implement. For details see [48].

7

• Decision Trees: The approach of this method is based on multi-stage decision

making. In order to build decision trees, this method uses a series of splitting rules.

For details see [1, Chapter 8.1].

• Random Forests: This method is an ensemble learning that is used in both

classification and regression by building a large number of individual decision trees.

For details see [1, Chapter 8.2.2].

2.3 Unsupervised Learning

Contrary to supervised learning, in unsupervised learning there is no associated

response variable for the observations. Unsupervised learning is more challenging

than supervised learning since we only have the input data xi without a prescribed

output variable yi, and we want to learn the structure of the data from the data alone.

For example, it is not possible to apply a classification or regression problems directly,

because there are no response variables to predict. That is why this learning method

is referred to as unsupervised since there are no response variables that can guide our

algorithm. Unsupervised learning needs to find the relationships between the variables

or between the observations to understand the data.

The most common methods operate in the unsupervised learning domain are

• Cluster analysis or clustering: It aims to group or segmenting observations in a data

set into clusters. The observations in the same cluster are more closely each other

than observations the different clusters. Grouping a data set with similar patterns

reduces the complexity of the data and makes it easier to interpret the data. For

details see [2, Chapter 14.3]

• Principal Component Analysis (PCA): PCA is a method to dimensionality reduction

of a data set. PCA chooses the most meaningful component with the high variation

along the features in a data set to filter out the noise. See Section 4.1.

• Anomaly detection: Anomaly detection classifies the input data as normal and

abnormal based on past data. For example, this method is used in the computer

security area for intrusion detection by labeling each the behavior as normal or

abnormal with past behavior using user profiles. For details see [49].

8

• Association rule mining (ARM): ARM aims to find patterns, interrelations,

associations or casual structures among the observations in a data set. The

commonly used ARM algorithms are Apriori Algorithm and Eclat Algorithm. For

details see [50], [51].

Figure 2.1 shows a simple illustration of the clustering problem [1, Chapter 2.1.4].

It is shows a plot of 150 observations on two variables, X1 and X2. Each data point

corresponds to one of three distinct group. On the left-hand side of Figure 2.1,

clustering of this is more easy than the left side. Because these groups are

well-separated. On the contrary the right plot is some serious challenging problem,

since an observation can be assigned to more than one group. There is some overlap

between the groups. In this situation, a clustering algorithm could not be expected to

classify to each overlapping points correctly (blue, green, or orange in Figure 2.1.

2.4 Semi-Supervised Learning

Majority of the problems that fall within Machine Learning domain are solved either

with supervised or with unsupervised learning methods. However, while some of

the data contain only input variables, the remaining data may be labeled with the

response variable. For example, suppose our data set contains of n observations

X = {x1, . . . ,xm, . . . ,xn} where m < n. There is a number of m observations have

both predictor measurements and response measurement Y = {y1, . . . ,ym}, whereas

the remaining n−m observations in X have only predictor measurements.

In generally we have a small amount of labeled data in X , since collecting response

measurement may be more expensive than predictors. Because there is a need to be

human annotators to build classifiers. When is comes to the unlabeled data, unlabeled

data is relatively easy to collect.

When there are both labeled and unlabeled samples in the data, semi-supervised

learning is useful because it combines supervised and unsupervised learning [1,

Chapter 2.1.4]. The most common semi-supervised learning techniques are:

• Generative Mixture Models and EM: This is a probabilistic way of assumes a

generative model p(x,y) = p(y)p(x|y) where p(x|y) is an identifiable mixture

distribution [52]. When we have a large amount of unlabeled data, we can identify

9

Figure 2.1 : In this clustering data set, each group is shown in different colors. The
left plot shows the well separated groups. Clustering in these groups will

be successful. The right plot shows there is some overlap among the
groups. In this case, it is more difficult to cluster. [1, Chapter 2.1.4].

the mixture components. The model needs to only one labeled data to identify the

per component to construct the mixture distribution. We need to pay attention to a

few things while building a model. The model should be identifiable. The model has

to be also correct to improve the accuracy. Otherwise, unlabeled data may actually

lead to lower accuracy. Even if the model is correct, in practise mixture components

may be found wrongly. Because the model uses Expectation-Maximization (EM)

algorithm to founding local maximum. In the case of the local maximum is far from

the global maximum, the unlabeled data does not contribute to the accuracy of the

model. For details see [53].

• Transductive Support Vector Machines (TSVM): An extension of the classical

support vector machines with unlabeled points is called Transductive Support

Vector Machines. Standard SVM maximizes the the margin for only labeled points,

TSVM maximizes the margin both for labeled and unlabeled points when construct

the model. For details see [54].

• Graph-Based Methods: This method defines a graph to represent the data by

classifying the nodes are labeled and unlabeled points. This method also reflects

the similarity of the samples with edges. Thus, the data can be represented by a

graph-based approach to semi-supervised learning. For details see [55] and [56].

10

Figure 2.2 : The behavior of test error and training error according to the change of
the model complexity. The training error err indicated by blue curve,
and the conditional test error Errτ indicated by red curve. The solid

curves also indicate the expected test error Err and the expected training
error E[err]. There are simulated 100 training sets each of size

50 [2, Chapter 7.2].

2.5 Cross-Validation

In this Section we primarily use [2, Chapter 7.10]. We have two main objectives that

are model selection and model assessment to the best approaches of our problems. In

the model selection, we compare the estimating performance of candidate models and

select the best one. After selecting the best model, we estimate the prediction error of

the chosen model on the future data set.

Cross-validation is a statistical method that assesses model performance. In the model

assessment part of our task, note that we will use a tuning parameter α to control

our model complexity by varying α . The estimation of the prediction error of our

model denoted by f̂ (x,α) under the tuning parameter α . The parameter α controls

the learning process to minimize the error while the optimize main parameters of our

model. The tuning parameter α allows us vary the model and allows us to control

trade-off between the bias and variance in minimizing the error. (See Figure 2.2).

11

2.5.1 Test and training error

Before talking about cross-validation methods, let us look at some definitions. We

optimize the parameters of the model by using sample observations from the data. We

both train the model and test it using the data. To do this, we split the data into the

training and the test set. The data that the model uses to construct the model is called

training data set, and the test data set is the data used for testing the generated model.

The error calculated on the training data set is called training error rate. We calculate

the training error by averaging the loss on the training set

err =
1
N

N

∑
i=1

L(yi, f̂ (xi,αi)) (2.1)

We predict response on a new observation using the model on the test data set. The

average error resulting from the prediction is called the test error, and it is also called

as generalization error and it is denoted by

Errτ = E[L(Y, f̂ (X ,α)|τ] (2.2)

Suppose we have a model f̂ (X ,α) that we constructed using the training set τ where

our data consists of points X vectors of inputs {x1, . . . ,xn} and a response variable Y .

We predict the response variable Y using the model with some error. There are we use

a loss function to measure the difference between our prediction of the target value and

the real response value. The loss function is denoted by L(Y, ˆf (X ,α)).

The two most common loss functions are:

L(Y, f̂ (X ,α)) =

{
(Y − f̂ (X ,α))2 squared error
|Y − f̂ (X ,α)| absolute error

(2.3)

In cross validation we estimate the expected test error:

Err = E[L(Y, f̂ (X ,α))] = E[Errτ] (2.4)

For example, if we use a linear fitting method is defined as

ŷ = Sy. (2.5)

12

Figure 2.3 : A typical split of the data into three parts which are 50% for training,
25% for validation and the remaining 25% for testing.

where S is the NxN matrix depending on the xi only not on y. The ŷ indicates the

predictions of the outcomes yi using the model. The set of models for many linear

fitting methods by choosing the loss function is squared error,

1
N

N

∑
i=1

[yi− f̂−i(xi,αi)]
2 =

1
N

N

∑
i=1

[yi− f̂ (xi,αi)

1−Sii

]2
, (2.6)

where Sii is the ith diagonal element of S. Thus, the generalized cross-validation

approximation is given by

GCV (f̂ ,α) =
1
N

N

∑
i=1

[yi− f̂ (xi,αi)

1− trace(S)/N

]2
. (2.7)

where trace(S) is the effective number of parameters that is equal to the sum of the

elements on the main diagonal of S. We use trace(S) instead of the Sii for easier to

compute. In cases, matrix S is the projection of a set which is spanned by P features,

trace(S) = P. The model complexity controls in this way, since the model complexity

is associated with the number of parameters.

2.5.2 Cross-validation methods

We will explore the following cross-validation techniques below:

1. Resubstitution validation

2. Hold-out validation

3. K-fold cross validation (CV)

4. Leave-one-out-cross-validation (LOOCV)

The simplest kind of validation set approach is the resubstitution validation, the whole

data set is used to train the model and tests the model on the same data set. This

13

Figure 2.4 : In 5-fold cross-validation, the data set is randomly splitted into 5 equal
sized subsets.

procedure therefore suffers from over-fitting. The model works well in the available

data but does not work well to the future data points.

One other approach for cross-validation is the hold-out validation. This method

randomly split the data points into two distinct sets are training and test. There is

no general rule to split the data points in which for a train set, a validation set and a

test set. In general, we split 50% the observations for the training set, 25% for the

validation set and 25% for the test set. We build a model on the training set and test

its performance on the test set. In cross-validation we run the model multiple times for

testing, in contrast we test it once in the hold-out validation method. In order to avoid

misleading results, we need to consider this when evaluating our model with hold-out

validation.

When we have enough data, we can set aside a validation set to use it to assess

the performance of our forecasting model. But when we train the model and test it

once using a simple validation approach like the hold-out cross-validation, we find the

performance of the model once. The results depends on how we split the data as the

test and the training set. When we do this only for once, we might make a mistake

in assessing the model and the result is not confident. To handle this problem, K-fold

cross validation uses part of the data to fit the model, while the different part tests the

model.

For K-fold cross validation, we split the data into K equal-sized parts. For example

Figure (2.4) depicts the case for K = 5. We fit the model for the Γth part on the

remaining K− 1 parts of the data set as shown in Figure 2.4. Then, we predict the

Γth part of the data and calculate the prediction error by applying the fitted model for

Γ = 1,2, . . . ,K and combine these K estimates of prediction errors.

14

Figure 2.5 : Cross-validation set approaches

Let us define an indexing function that indicates the partition to which observation i

is allocated by the randomization. Γ : {1, . . . ,N} 7→ {1, . . . ,K}. f̂−Γ(x) is the fitted

function to remove the Γth part of the data. The cross-validation estimates the error by

averaging these K estimates of the prediction errors:

CV (f̂) =
1
N

N

∑
i=1

L(yi, f̂−Γ(i)(xi)). (2.8)

The special case of cross-validation where K = N the number of points in the data set

is called leave-one-out-cross-validation. This means that a number of folds equals to

the number of instances. For a data point (X ,Y), if Γ(X) = i we are going to use (X ,Y)

for validation, i.e. to test the model. The f̂−Γ(x,α) denotes the model that we fit the

data by leaving out the Γ-th partition using α as the tuning parameter.

Then, we calculate the average error

CV (f̂ ,α) =
1
N

N

∑
i=1

L(yi, f̂−Γ(i)(xi,αi)). (2.9)

Tuning parameter αi minimizes the error for the function L(yi, f̂−Γ(i)(xi,αi))

2.5.3 The right way to do cross-validation

Now assume that we are given a classification problem that has a large number of

predictors (features). A typical way of implementing cross-validation analysis can be:

1. Randomly dividing the data set into K folds.

2. Apply the following steps for each fold Γ = 1,2, . . . ,K.

(a) Choose a subset of predictors that depending on the correlation between the

class labels, using all of the samples except those in the fold Γ to reduce the

error rate. When we have a large number of predictors in the data set, some

predictors might have weak correlation with the features and may mislead the

model.

15

(b) Use only this subset of predictors when building the classifier. We choose a

random set of samples using K-fold cross validation. Then we compute the

correlations of pre-selected predictors with class labels over just this samples

chosen without those in fold Γ.

(c) Predict the class labels for the samples in the Γ-th fold using the classifier we

built in the step before.

3. Estimate the tuning parameters using the cross-validation and find the prediction

error using cross-validation estimator of the final model. The process results of (2c)

for each K folds are the estimate of prediction error. The K-fold CV estimate is

computed by averaging all results for each K-fold using 2.9.

16

3. BASIC MACHINE LEARNING ALGORITHMS

3.1 Logistic Regression

3.1.1 The logistic model

The logistic model is used to model the binary classification problems having output

such as 0/1. For instance, when we have a data set with binary response variable Y

falls into one of the categories, Yes/No, logistic regression (LR) finds the probability of

these two possible values. In the logistic model, we do not directly model the response

variable Y , we model the probability of Y belonging to one of the two classes. Pr(Y =

Yes|X) indicate that the probability of Y given X where X is predictor. Pr(Y = Yes|X)

can be written as p(X) shortly and its range between 0 and 1. Usually, we use a

threshold value and when the probability satisfies p(X)> 0.5, we predict Y = Yes.

We need to relationship between the p(X) and X using a function. In this method, we

use a logistic function to build a model:

p(X) =
eφo+φ1X

1+ eφ0+φ1X (3.1)

where φ0 and φ1 are the model parameters and X is the predictor. After simple

manipulation, we find

p(X)

1− p(X)
= eφ0+φ1X . (3.2)

The ratio p(X)
1−p(X) which is left side of the equation is called the odds and its range

between 0 and ∞. After taking logarithm of the equation,

log

(
p(X)

1− p(X)

)
= φ0 +φ1X . (3.3)

In this equation log
(

p(X)
1−p(X)

)
is called the log-odds or logit.

17

3.1.2 Estimating the regression coefficients

In logistic regression, the coefficients φ0 and φ1 in the equation (3.1) need to be

estimated. Logistic regression uses the maximum likelihood estimation (MLE) to find

the estimates of the values of the unknown parameters, thus achieving the predicted

values of probability p(xi) for the each observation in the data set using (3.1). Thus we

plug the estimated value of coefficients φ̂0 and φ̂1 in 3.1 to the model for p(X).

We use the likelihood function to find the estimated coefficients by maximizing:

l(φ0,φ1) =
n

∏
i=1

p(xi)
yi(1− p(xi))

1−yi (3.4)

where xi is the training data points, and the response variable is Y . After finding the

coefficients, we make a prediction with computing the probability of Y . The products

turn into the sums in (3.4) by taking logarithm:

log(l(φ0,φ1)) =
n

∑
i=1

yi log p(xi)+(1− yi) log(1− p(xi)) (3.5)

=
n

∑
i=1

yi log p(xi)+ log(1− p(xi))− yi log(1− p(xi)) (3.6)

=
n

∑
i=1

yi log
p(xi)

(1− p(xi))
+ log(1− p(xi)) (3.7)

We know log
(

p(X)
1−p(X)

)
is the logit from the equation (3.3). So we substitute the

equation φ0 +φ1xi in the last step:

=
n

∑
i=1

yi(φ0φ1xi)+ log((1− p(xi)) (3.8)

And then substitute the logistic function to the p(xi), the equation becomes:

=
n

∑
i=1
−log1+ eφ0φ1xi +

n

∑
i=1

yi(φ0 +φ1xi) (3.9)

We take the derivative of the log-likelihood with respect to the unknown parameters

φ0,φ1 and equal it to zero to find maximum likelihood estimations of the parameters

approximately:

∂ l
∂φ0

= 0 and
∂ l

∂φ1
= 0 (3.10)

18

3.1.3 Multiple logistic regression

It is possible to extend (3.3) when we have multiple predictors in a data set.

log

(
p(X)

1− p(X)

)
= φ0 +φ1X1 + · · ·+φpXp, (3.11)

where X = (X1, . . . ,Xp) are the predictors we have. Thus, the probability p(X) is as

follows

p(X) =
eφ0+φ1X1+···+φpXp

1+ eφ0+φ1X1+···+φpXp

We use the maximum likelihood estimation to the find the coefficients φ0,φ1, . . . ,φp

again.

3.2 The Bayes Classifier

The Bayes classifier calculates the conditional probability of each observation X = x0

and assigns the observation to the class for which largest probability. The conditional

probability of Y given X

Pr(Y = j|X = x0) (3.12)

where X = x0 is a predictor vector to the class Y = j. The Bayes classifier rule in the

binary problem is that assign an observation to the class 1 or class 2 using conditional

probability (3.12) like below.{
class 1 if Pr(Y = 1|X = x0)> 0.5
class 2 otherwise

(3.13)

Consider the example of data set simulated in a binary problem. There are the features

X1 and X2 in the dimensions. Each class in the data set has the N = 100 points that

showed a different color whose color depends on the class in the figure. Also, the

region of the class represented by the background grid color. Bayes classifier finds the

conditional probability Pr(Y = orange|X)> 0.5) of the points in order to obtain their

back ground color identifying the region of the class. The Bayes decision boundary

occurs after assign the class of each observation. The boundary shown by purple

dashed line in the mentioned figure.

The Bayes classifier gives the lowest error rate on the test data. The error rate is called

Bayes error rate. The reason for the lowest error rate is that the Bayes classifier assigns

19

Figure 3.1 : The data points are simulated in different groups, shown in blue and in
orange. Bayes decision boundary is shown in purple dashed

line. [1, Chapter 2.2.3]

the point to the target value which for largest conditional probability (3.1). The Bayes

error rate defined as follows:

1−E
(

max jPr(Y = j|X)
)
, (3.14)

where the E denotes the averages the probability of the all observations X in the data

set.

3.2.1 Mathematical background

3.2.1.1 Using Bayes’ Theorem for classification

[1, Chapter 4.4.1]

Suppose we have more than two classes K ≥ 2. Let πk denotes the prior probability

of an observation from the kth class. The density f unction of X for any observation in

which for kth class is defined as follows:

fk(x)≡ Pr(X = x|Y = k) (3.15)

The Bayes’ Theorem is given by

Pr(Y = k|X = x) =
πk fk(x)

∑
K
l=1 πl fl(x).

(3.16)

20

Note that the pk(X)is an abbreviation of Pr(Y = k|X). We will see that in the linear

discriminant analysis chapter, LDA finds estimate the values of πk and fk(X). The

LDA such a classifier that approximates the Bayes classifier.

21

22

4. LINEAR ALGEBRAIC METHODS

4.1 Principal Component Analysis

Principal Component Analysis (PCA) is an unsupervised machine learning method

for reducing the number of features given in a data set. This procedure of reducing

the number of features in a data set is called dimensionality reduction. This method

allows us to reduce the number of variables correlated among themselves by selecting

the basis vectors with higher variability for the original set. In short, PCA finds the

directions along which the data has maximum variability.

4.1.1 Mathematical background

We used [57] for most of the material covered in this subsection. Now, let us

summarize the procedure of applying PCA to a given data set.

4.1.1.1 Calculation of the Covariance Matrix

We calculate the covariance matrix of the data. If n is the number of features, the

resulting matrix will be a n×n-matrix.

Σ =

Cov(x1,x1) Cov(x1,x2) · · · Cov(x1,xn)
Cov(x2,x1) Cov(x2,x2) · · · Cov(x2,xn)

...
...

Cov(xn,x1) Cov(xn,x2) · · · Cov(xn,xn)

where x1,x2, · · · ,xn are the features of the data and

Cov(xi,x j) =
m

∑
k=1

(x(k)i − x̄i)(x
(k)
j − x̄ j)

(m−1)
(4.1)

where m is the number of data points. We start by subtracting the mean from each of

the features. Below, we are going to use Data Adjust to denote the data features with

the means subtracted.

DataAd just = (x(k)i − x̄i), i = 1, . . . ,n k = 1, . . . ,m (4.2)

23

Figure 4.1 : A simple illustration of a kind of two-dimensional data on the top left
panel. The plot of transformed data applying PCA is shown on the right
top panel. The bottom left panel shows the data after apply PCA keeping

only first principal component. The bottom right panel shows the
illustration of the reconstruction data using only the most significance

component. We used the Mglearn library to plot this illustration.

24

We use the terms feature and dimension interchangeably. All data points in each

dimension minus the average of the dimension yields a feature centered with mean

0.

The entries on the non-diagonal of Σ is the covariances between each features.

A positive covariance means the features are positively related, while a negative

covariance means the features are inversely related. By this we mean, with positively

correlated features if one increases the other one increases as well, and with inversely

correlated features if one increases the other one decreases.

4.1.1.2 Calculation of the eigenvectors and eigenvalues of the covariance matrix

Finding eigenvalues and corresponding eigenvectors of the covariance matrix gives us

important information about the data. The eigenvalues tell us how much variance there

is in the data set along the direction of the eigenvector corresponding to this eigenvalue.

Since the covariance matrix is symmetric and positive, all these eigenvalues are

positive real numbers. The covariance matrix is a real n×n symmetric matrix, then the

matrix has n orthogonal eigenvectors with the real eigenvalues according to Spectral

Theorem [58, Theorem 5.14]. Thus the eigenvectors are of unit length, and are

orthogonal to each other. This allows the PCA to express the data in these eigenvectors

rather than in the original axes.

Since the eigenvalues tells us the variability of the data along the eigenvector

corresponding to that spesific eigenvalue, when we sort the eigenvalues from largest to

smallest we also sort the corresponding eigenvectors with respect to the significance

of information of the data along the corresponding eigenvectors. The corresponding

eigenvector of the largest eigenvalue is the principal component of the data set. It is

the most significant direction of variance in the data, and the components along the

smaller eigenvalues can be excluded to reduced the number of features.

After this dimensionality reduction step, the final data has fewer dimensions than the

original one. To do this we need to form a new set of feature vectors [57]. If we choose

the e eigenvectors that correspond to the e largest eigenvalues,

FeatureVector = (eig1 . . .eige) (4.3)

25

where e≤ n.

In order to construct the new features we use a transformation matrix that sends a

vector written in the standart basis to a new basis given by the eigenvectors follow by

a projection matrix that deletes the eigenvectors with small eigenvalues.

4.1.1.3 Deriving the new data set

To derive the new data set according to the chosen eigenvectors, firstly, we need to

multiply transpose of the FeatureVector by transpose of the DataAd just. Thus the

final data set is

FinalData = RowFeatureVector×RowDataAd just (4.4)

The latest data gives us only the original data for the eigenvectors we selected.

The eigenvectors are perpendicular, it means that the components are perpendicular

too. This helps us an efficient expression of the data. Data have projected to the

eigenvectors. Thus, we reduced the number of dimensions of the original data by

PCA.

On the other hand, we can keep all eigenvectors on the data using PCA. There are the

eigenvectors create the directions of the new axis because their lengths are 1. This gives

us a projected to a data sets on the new axis to analyzing the data efficiently. Principal

components are derived from projecting the data to the eigenvectors that maximize the

variance along that vectors which are the new axis of our data. Even if we do not

reduce the number of features, by changing coordinates we get a new set of features,

ordered with respect to their variability.

4.1.1.4 Can we get back to the old data?

New data set can get back to the original data set depending on the previously chosen

eigenvectors. If we have chosen them all, we will get the original data back exactly.

Since we removed some eigenvectors, we lost some information from the original data

when we reconstruct the data. Recall that the final transform expressed in the form:

FinalData = RowFeatureVector×RowDataAd just, (4.5)

from this transform, to get the original data back,

26

RowDataAd just = RowFeatureVector−1×FinalData (4.6)

where RowFeatureVector−1 is the inverse of RowFeatureVector.

The equation can be easily writing that

RowDataAd just = RowFeatureVectorT ×FinalData (4.7)

Then to get the original data back, adding the mean that subtracted before. So, for

completeness,

RowDataAd just = (RowFeatureVectorT ×FinalData)+OriginalMean (4.8)

This formula still makes the right transformation to retrieve old data back even if we

do not have all the eigenvectors in the feature vector.

4.1.2 The advantages and disadvantages of using PCA

When the data is high dimensional, and therefore, hard to represent graphically PCA

helps us to reduce the number of features and makes it easier to visualize and recognize

patterns to analyze. Another advantage of using PCA is reducing the noise since PCA

chooses a basis with maximum variation deleting vectors yielding small variations.

The difficulty in using PCA is the fact that it is difficult to evaluate the covariance

matrix accurately [59].

There are some limitations to apply PCA on a data set. PCA has an assumption that

the data has a multivariate Gaussian distribution even if the data has a non-Gaussian

distribution. If the data has multivariate normal distributions, the correlations of the

features are zero. This implies that the features are orthogonal each other. In this case

PCA works well to projection of the data points in the lower dimensional. On the other

hand, PCA can keep very few data points for data having non-Gaussian distributions.

Independent component analysis (ICA) is an extension of PCA to challenge this issue

to fit the data by finding better bases that do not have to orthogonal [60]. The

other limitation is that PCA gives us the linear components to fit the data even if

the components are not appropriate to keep in our data. In some cases, we need a

non-linear principal components. Kernel PCA (KPCA) is an extension of PCA to solve

this problem. For details see [61]. We also cannot apply PCA directly to the categorical

27

data. In this case, different techniques are needed to calculate the covariance matrix

and apply the method. One special extension is multiple correspondence analysis

(MCA) for categorical data set [62].

4.1.3 Singular value decomposition

X be a real n×m matrix where n≥ m and the decomposition of X is

X =UΓV T (4.9)

where U is a n×m orthonormal matrix (UTU = I), V is m×m orthonormal matrix

(VV T = I), Γ is a m×m diaogonal matrix, which consists of the square-roots of the

eigenvalues of XXT and XT X called singular values in descending order.

4.1.4 Relationship between PCA and singular value decomposition

Implementing PCA on data which is very large data sets can be expensive, but applying

PCA using SVD provides us an advantage.

Assume X is an n×m data matrix where n≥m. The rows in X denote the features j =

1, . . . ,n and the columns denote the samples ζ = 1, . . . ,m. It means that the components

are X j,ζ = xζ

j . The mean vector is

〈x〉 ≡ 1
m

m

∑
ζ=1

xζ (4.10)

and the empirical covariance matrix is given by

Σ≡ 1
m

m

∑
ζ=1

(xζ −〈x〉)(xζ −〈x〉)T (4.11)

Covariance matrix of X can be written using the matrix formulation as below:

Σ≡ 1
m

XXT (4.12)

where we have subtracted the mean of the data set: X j,ζ := X j,ζ − 〈x j〉. X is

decomposed using SVD, i.e.

X =UΓV T (4.13)

28

Decomposed X can be written in the equation of covariance matrix. The columns of U

are the eigenvectors of covariance matrix Σ.

Σ =
1
m

XXT =
1
m

UΓ
2UT (4.14)

where U is n×m matrix, if n < m, the first n columns in U corresponds to the

sorted eigenvalues of Σ and if m ≥ n, the first m corresponds to the sorted non-zero

eigenvalues of Σ in descending order.

The final data which is transformed using by SVD can thus be given by

FinalData = ÛT X = ÛTUΓV T (4.15)

where ÛTU is a n×m matrix which entries on the diagonal are all one and zero

everywhere else. Thus we derived the final data in terms of the SVD decomposition of

X [63].

4.2 Linear Discriminant Analysis

Our main source for this Section is [1, Chapter 4.4].

Linear Discriminant Analysis (LDA) is a supervised feature extraction method for

classification of data and dimensionality reduction. LDA maximizes the ratio of

the variance between the classes to the variance within the classes in data set, thus

achieving maximal separability [64].

We know that the logistic regression model the probability Pr(Y = k|X = x) of the

response variable in which for one of the kth classes using the logistic function

(Section 3.1). LDA models the distributions of the predictors X in which each class

separately. And then LDA uses Bayes’ Theorem (See Section 3.2) to estimate the

probabilities Pr(Y = k|X = x).

4.2.1 LDA for p = 1

In this section, we show that approach of the LDA when we have one only one

dimension p = 1 in the data set. We shall suppose that the density function fk(x)

is Gaussian or normal as follows:

29

fk(x) =
1√

2πσk
exp
(
− 1

2σ2
k
(x−µk)

2
)
, (4.16)

where µk is the mean and σ2
k is the variance in which for the k-th class. We shall

assume that the variances of all k classes are the same σ2
1 = · · ·= σ2

k , where we set σ2

as the variance for the all classes. Plugging (4.16) into the Bayes’ Theorem (3.16) we

get:

pk(x) =
πk

1√
2πσ

exp(− 1
2σ2(x−µk)

2)

∑
K
l=1 πl

1√
2πσ

exp(− 1
2σ2(x−µl)2)

(4.17)

Bayes classifier assigns the class for the data point X = x in which for the value of

pk(x) is largest.

Taking the log and rearranging terms of equation (4.17), we get the equation to assign

the class for an observation with the same rule as follows:

ηk(x) = x.
µk

σ2 −
µ2

k
2σ2 + log(πk) (4.18)

In the case of we have two classes K = 2 and π1 = π2, the assignment rule is given by

the Bayes classifier {
class1 if 2x(µ1−µ2)> µ2

1 −µ2
2

class2 otherwise
(4.19)

The Bayes decision boundary is given by

x =
µ2

1 −µ2
2

2(µ1−µ2)
=

µ1 +µ2

2
(4.20)

LDA classifier uses the Bayes classifier by estimating the parameters

µ1, . . . ,µk,π1, . . . ,πk,σ
2 and plugging the estimates into (4.18).

µ̂k =
1
nk

∑
i:yl=k

xi and σ̂2 =
1

n−K

K

∑
k=1

∑
i:yl=k

(xi− µ̂k)
2 (4.21)

where n is the number of training observations, nk is the number of training

observations in kth class. In practice, we need to estimate the parameter πk

π̂k =
nk

n
(4.22)

30

The estimated µ̂k, σ̂2 and π̂k plugs into (4.18) and the LDA classifier can assign an

observation for which

η̂k(x) = x.
µ̂k

σ̂2
−

µ̂2
k

2σ̂2
+ log(π̂k) (4.23)

is largest.

4.2.2 LDA for p > 1

Predictor variable X extend the multiple predictors X = (X1,X2, ...,Xp). We shall

further assume that the predictors come from multivariate Gaussian or normal

distribution that has mean vector for each class and has the common covariance matrix.

It means that p-dimensional variable X has a multivariate Gaussian distribution that

denotes by X ∼ N(µ,Σ) where the mean of X is E(X) = µ and covariance matrix of

X is Cov(X) = Σ. In the multivariate dimensional setting with p > 1, the multivariate

Gaussian density is given by

f (x) =
1

(2π)
p
2 |Σ| 12

exp(−1
2
(x−µ)T

Σ
−1(x−µ)). (4.24)

where µk is a mean vector of the kth class, X ∼ N(µk,Σ) is a Gaussian distribution

and Σ is a common covariance matrix for the all classes. We again plug the density

function into (3.16). Thus Bayes classifier assigns to each point X = x using the largest

value of discriminant function

ηk(x) = xT
Σ
−1

µk−
1
2

µ
T
k Σ
−1

µk + logπk (4.25)

where µk is a mean vector of the kth class, and Σ is a covariance matrix. The class of the

observation again determined by the largest value of the discriminant function which

for the k class. The discriminant function is the same with (4.18). The difference

of this discriminant function is that we need vector and matrix because we have the

multidimensional observations.

Bayes decision boundary can separate the classes from each other by two by two. The

intuition of the determination of the boundary is that we need to find the points that may

be assign to both classes. The set of the points X = x build us the decision boundary

for ηk(x) = ηl(x) as follows:

xT
Σ
−1

µk−
1
2

µ
T
k Σ
−1

µk = xT
Σ
−1

µl−
1
2

µ
T
l Σ
−1

µl (4.26)

31

for k 6= l. Thus, the predictor space is divided by Bayes decision boundaries. The

unknown parameters µ1, ...,µk,π1, ...,πk, and Σ are estimated with the same formulas

as in (4.21) that we are already showed the one-dimensional case. The estimated values

plugs into (4.25) to assign the data points X = x. Thus LDA classifies a point for which

class ηk(x) is largest.

4.2.3 The advantages and disadvantages of using LDA

The LDA method, which is easy to implement is well-suited for multi-class problems

for classification and dimensional reduction. In contrast to PCA, LDA provides a

feature subspace that maximizes class separability. However, there are also some

disadvantages of using LDA. The method LDA assumes that the samples are drawn

from a Gaussian or normal distribution with a common covariance matrix for each

class. For this reason, the LDA may not work well if the observations do not have

a Gaussian distribution. Quadratic discriminant analysis (QDA) extends LDA by

allowing the covariance matrices for each class [65]. The LDA basically provides a

linear classifier by finding a linear decision boundary between the classes so it may not

perform well in non-linear data.

4.3 Support Vector Machine

Support Vector Machine (SVM) is a supervised machine learning algorithm used

mainly for classification problems than regression problems. The purpose of the SVM

is to find a set of optimal hyperplanes that divide our data set into disjoint subsets for

classification. SVM chooses these hyperplane by maximizing the margins between

data points of different classes.

4.3.1 Maximum margin classifier

Our main source for throughout this Section [3].

Suppose there are two classes need to classify using linear model of the form.

y(x) = wT
θ(x)+b (4.27)

where θ(x) is a feature space mapping, w is a weight vector and b is the bias parameter.

We assume the training data set consist of N observations x1, ..,xN , and k1, . . . ,kN are

32

Figure 4.2 : The left figure shown is the margin. The right figure shown that the
decision boundary found by maximizing the margin. The location of this
boundary is determined by support vectors by maximizing margin. The

indicated points by circles are the elements of the subset of the data
points, that uses to determine the support vectors. [3, Chapter 7.1.]

the response variables of the given input vectors where kn ∈ {−1,1}. We predict the

target values of the new data point x determined by the sign of y(x).

When the training data set is linearly separable, one can find parameters w and b that

satisfy y(xn) > 0 for points having kn = +1 and y(xn) < 0 for points having kn = −1.

Hence kny(xn)> 0 for all training data points. If there are too many solutions for these

parameters that separate the classes, we need to try to find the best solution with the

smallest generalization error. So, in SVM we compute the the margin which is defined

as the largest distance between two class boundaries as shown in 4.2 [3, Chapter 7.1].

We need to measure the distance of the each observation from the boundary. The

perpendicular distance shown by blue dotted line in Figure 4.3. The equation of the

distance is given by using using Equation (4.27).

|y(x)|
‖w‖

=
|wT θ(x)+b|
‖w‖

(4.28)

When we proceed on the correct classified points it is means that kny(xn)>0 for all

data points correctly classified, thus multiplying the distance equation by kn, we find

kny(x)
‖w‖

=
kn(wT θ(x)+b)

‖w‖
(4.29)

33

Figure 4.3 : The decision surface is shown by the red line, is perpendicular to w, and
its displacement from the origin is controlled by the parameter w0. The
perpendicular distance of a point x to the decision boundary is given by

y(x)/||w||. [3, Chapter 4.1.1.]

We can find the margin using this formulation by taking the closest point from the data

set. SVM optimizes the parameters w and b in order to maximize the distance of the

data points from the boundary. Thus and so, the optimal distance can be found by

solving this optimization problem.

argmax
w,b

{
1
‖w‖

min
n
[kn(wT

θ(xn)+b)]
}

(4.30)

Since the optimization problem is complex to solve directly, we make it a simpler

problem. We shall convert the optimization problem in order to easier solving the

problem by rescaling w−→ Γw and b−→ Γb. And then the distance from any point xn to

the hyperplane is the same as mentioned before kny(xn)
‖w‖ thanks to this scaling.

kn(wT
θ(xn)+b) = 1 (4.31)

The equation (4.31) holds for the closest point to the surface. For other points, this

equality will be greater than one. Thus, we obtain the below constraints the all data

points.

34

kn(wT
θ(x)+b)≥ 1, n = 1, ...,N. (4.32)

The constraint is active for data points that hold the inequality, while the constraint

is inactive for the remaining points. The optimization problem that we need to solve,

requires that we maximize ‖w‖−1, which is the same as minimizing ‖w‖2, then our

optimization problem is

argmin
w,b

1
2
‖w‖2 (4.33)

subject to the given constraints by (4.32). This optimization problem is such a

quadratic programming problem. Our purpose here is to minimize a quadratic function.

We need to do this under the constraints we have while minimizing this problem. We

use the method of Lagrange multipliers to solve the problem. The Lagrangian function

is given by

L (w,b, ȧ) =
1
2
‖w‖2−

N

∑
n=1

an{kn(wT
θ(xn)+b)−1} (4.34)

where ȧ = (a1, ...,aN)
T . These scalers an ≥ 0 are the Lagrange multipliers, we have

one of them, one for every constraint in (before). Following two conditions can be

given on the derivatives of the L (w,b, ȧ) with respect to w and b equal to zero.

w =
N

∑
n=1

anknθ(xn) (4.35)

0 =
N

∑
n=1

ankn (4.36)

We eliminated w and b from L (w,b, ȧ) using the above conditions. Then, we find the

dual representation of the problem.

L̃ (ȧ) =
N

∑
n=1

an−
1
2

N

∑
n=1

N

∑
m=1

anamknkmk(xn,xm) (4.37)

where the kernel function is k(x,x
′
) = θ(x)T θ(x

′
). We need to maximize the problem

under the constraints

an ≥ 0, n = 1, ...,N, (4.38)
N

∑
n=1

ankn = 0 (4.39)

35

The same case in here, this is again the form of a quadratic programming problem with

the constraints. When we want to classify new data points using the trained model,

sign of y(x) should be considered using (4.27). The y(x) also can be written using the

parameters {an} and the substitute (4.35) into w for the kernel function.

y(x) =
N

∑
n=1

anknk(x,xn)+b (4.40)

The optimization problem satisfies the Karush-Kuhn-Tucker (KKT) conditions under

the constraints which are given below

an ≥ 0 (4.41)

kny(xn)−1≥ 0 (4.42)

an{kny(xn)−1}= 0 (4.43)

Under these conditions, every data point satisfy either an = 0 or kny(xn) = 1. The data

points for which an = 0 have no contribution to the model, because these data points

disappear in the equation (4.40). The remaining data points is the support vectors

which obtain by kny(xn) = 1, as shown in Figure 4.2 by the circles. After the model

is trained using SVM, a large amount of the data points can be ignored only keeping

support vectors to future points.

And then, we find the threshold parameter b considering any xn satisfies kny(xn) = 1

using (4.40).

kn

(
∑

m∈S
amtmk(xn,xm)+b

)
= 1 (4.44)

where S is the set of indices of the support vectors. Here, first multiply the above

equation through by kn and then averaging the equations over all support vectors. Then

the equation in above becomes using k2
n = 1, we find

b =
1

NS
∑
n∈S

(
kn− ∑

m∈S
amkmk(xn,xm)

)
(4.45)

where NS is the total number of support vectors. The SVM minimizes an error function

using regularization parameter λ

N

∑
n=1

E∞(y(xn)kn−1)+λ‖w‖2 (4.46)

36

where

E∞(z) =

{
0 if z≥ 0
∞ otherwise

(4.47)

to in either case satisfying the constraints (4.32).

4.3.2 SVM soft margin classifier

We considered data points are linearly separable and then we used the SVM hard

margin classifier even if the decision boundary nonlinear using kernel trick. Now

consider the data is not linearly separable, in this case, the support vector machine

with a hard margin does not really work well. We will change this approach with

allows few training points to be misclassified with a soft margin.

With this approach, few points lie on the wrong side of hyperplane and we have to

control it. To control the misclassified points, we use the slack variables ξn ≥ 0

corresponding to each training points xn for n = 1, . . . ,N. If the data points are on

the correct side of the margin, these variables are given the value ξn = 0, while we set

ξn = |kn− y(xn)| for the remaining part of data points. This slack variable imposes

a penalty for each misclassified points and the penalty function increases linearly

with the slack variable dependent on the perpendicular distance from a point to the

boundary. So that we can keep this approach under control even if the soft margin

makes a few mistakes.

Any data point on the boundary satisfies y(xn) = 0. Thus it will have ξn = 1 hence

from the linear penalty function defined above. On the other hand, if the point is on

the wrong side, the slack variable will have ξn > 1. The constraints given in (4.32) are

then modified by the slack variables

kny(xn)≥ 1−ξn, n = 1, ...,N (4.48)

where the slack variables should satisfy ξn ≥ 0.

If the corresponding slack variable satisfies ξn = 0, it says that the point is classified

correctly. In this case, the point may be on the margin or lies on the correct side of

the hyperplane. Data points for which 0 < ξn ≤ 1 are also classified correctly since

37

even though such points lie inside the margin, they are located on the correct side of

the hyperplane. In such a case ξn > 1, the point is misclassified. (See Figure 4.4).

We now minimize the optimization problem

C
N

∑
n=1

ξn +
1
2
‖w‖2 (4.49)

where C > 0 is regularization parameter that controls the trade-off between the margin

and the size of slack variable penalty ξn.

The Lagrangian is to minimize (4.49) under these constraints (4.48) with ξn ≥ 0.

L (w,b, ȧ) =
1
2
‖w2‖+C

N

∑
n=1

ξn−
N

∑
n=1

an{kny(xn)−1+ξn}−
N

∑
n=1

µnξn (4.50)

where the Lagrange multipliers {an ≥ 0} and {µn ≥ 0}.

The corresponding KKT conditions for the solution to be optimal is given as follows:

an ≥ 0 (4.51)

kny(xn)−1+ξn ≥ 0 (4.52)

an(kny(xn)−1+ξn) = 0 (4.53)

µn ≥ 0 (4.54)

ξn ≥ 0 (4.55)

µnξn = 0 (4.56)

where n = 1, . . . ,N. We then optimize these parameters w,b and ξn using (4.27).

∂L

∂w
= 0 =⇒ w =

N

∑
n=1

anknθ(xn) (4.57)

38

∂L

∂b
= 0 =⇒

N

∑
n=1

ankn = 0 (4.58)

∂L

∂ξn
= 0 =⇒ an =C−µn. (4.59)

These parameters w,b and ξn eliminated from the Lagrangian using these results above

and hence the dual Lagrangian found below:

L̃ (ȧ) =
N

∑
n=1

an−
1
2

N

∑
n=1

N

∑
m=1

anamknkmk(xn,xm) (4.60)

which is the same formulation with the separable data set. But the constraints are

slightly different. As mentioned before the Lagrangian multipliers an ≥ 0. Also we

find the an ≤C using (4.59) with the µn ≥ 0. Hence we have these constraints

0≤ an ≤C (4.61)
N

∑
n=1

ankn = 0 (4.62)

for n = 1, . . .N. The constraints (4.61) are called as box constraints. This is form of

the quadratic programming problem. After substitute (4.57) into (4.27), we find again

(4.40) in order to predict future data points.

The data points which have an > 0 generates the support vectors. In this case 4.53 have

to satisfy this equality

kny(xn) = 1−ξn. (4.63)

We find µn > 0 hence from (4.59) for the case when an <C. Then the slack variables

should be ξn = 0 to satisfy (4.56). This tells us the points are on the margin. When

an = C, the points are inside the margin. There are two cases for the points inside

the margin. If ξn ≤ 1, the points correctly classsified or ξn > 1 means the points

misclassified.

We mentioned above, in case of 0 < an <C have ξn = 0, and hence from kny(xn) = 1.

It follows below to the determine value of threshold parameter b

kn

(
∑

m∈S
amkmk(xn,xm)+b

)
= 1 (4.64)

39

Figure 4.4 : Illustration of the slack variables ξn ≥ 0. Data points with circles around
them are support vectors. [3, Chapter 7.1.1]

Again the equation becomes by averaging

b =
1

NM
∑

n∈M

(
kn− ∑

m∈S
amkmk(xn,xm)

)
(4.65)

where M is the set of indices of points which for 0 < an <C.

4.3.3 The advantages and disadvantages of using SVM

SVM is able to capable of doing classification and even regression when the data are

not regularly distributed or have an unknown distribution. SVM can found a unique

solution, since the optimally problem is convex. Once you have we have trained the

model with SVM, the support vectors allow us to classify new point without keeping

the other data points. Selection of the best support vector also controls the over-fitting

problem on the model [66]. The model also provides us with the advantage of deriving

the global optimum [66]. With SVM, we get good results by mapping using the kernel

into higher dimensions to the increase the power of the learning even when the number

of features in our data exceeds the number of data [67]. The method works well on

the non-linear data set by controlling the non-linearity through the kernel trick [67].

However, the selection of the kernel may not easy, especially when there is a large

amount of data, which takes too much time may be disadvantage. Although the model

gives us good accuracy, it may not be easy interpret the model.

40

5. MATERIALS AND METHODS

5.1 The Olivetti Faces Data Set

5.1.1 Data exploration

Olivetti faces data set [4] consists of 400 face images of 40 different people. Each

person has 10 different face images in the data set. The images contain different facial

expressions. There are also glasses on some images of faces. All images were taken at

AT&T Laboratories Cambridge with the same background in the same position. The

image files are in PGM format. Each image is grayscale and contains 92×112 pixels.

Each pixel has non-negative values from 0 for black to 255 for white in the original

data set, but we use a version of the size 64×64. There are 400 rows and 4096 columns

in the database. The rows contain images of each individual person and the columns

contain the pixel of those images. There are 4096 columns here because the images are

64×64 pixels. There is also a response variable, an integer value from 0 to 39, which

encodes which person these images belong to. The first ten rows belong to images of

the people encoded with 0 and the second ten rows belong to the images of the people

encoded with 1 and so on.

5.1.2 Method

5.1.2.1 Data preprocessing

After all, we easily fetched the data using Scikit-learn library [68]. We then created a

dataframe from the array using Pandas package [69]. We then standardized the features

for pixel scaling by subtracting the mean and scaling to unit variance. Figure (5.2)

shows the 40 distinct faces with the target values in the data set.

5.1.2.2 Applying models

In this section, we built thirty-one different models using LDA (4.2), PCA (4.1) and

SVM (4.3). Firstly, we classified the faces using LDA by projecting the data set onto

41

the different dimensional subspace. Secondly, we applied the SVM with a different

types of kernels which are linear, radial basis, polynomial with 3 degree, and sigmoid

function. As a third, we applied the SVM with choosing different kernels on the

reduced data by PCA for the classification tasks. When using the PCA we transformed

the data set onto a different number of principal components to interested in how to

change the performance of the model. The cross-validation method split the data into

three equal-size parts and then calculated the scores of the model three times with

different splits instead of once time. Finally, we calculated the accuracy, precision,

recall, f1-score metrics for the each model applied in this section.

5.2 Fashion-MNIST Data Set

5.2.1 Data exploration

Fashion-MNIST data set [5] consists of 70,000 fashion images that are labeled with one

of 10 different classes which are t-shirts, trousers, pullovers, dresses, coats, sandals,

shirts, sneakers, bags, and ankle boots. The 784 columns in the data set correspond to

the 28×28 pixels of the images, while the first column is their label of the ten classes.

5.2.2 Method

5.2.2.1 Data preprocessing

We fetched the data set from github profile of Zalando Research [70]. The first column

in the data refers to the corresponding label of the image. We extracted the first column

from data sets for the response variable. After then we standardized the features for

pixel scaling.

5.2.2.2 Applying models

We built thirty-one different models based on LDA (4.2), SVM (4.3) and SVM by

combining PCA (4.1) throughout the experiment on the Fashion-MNIST data set. We

applied the methods with the same approach as in the Olivetti data set experiment.

LDA was used to classify the images by projecting the data set into different

dimensional spaces. SVM performed using different kernel functions which are linear,

radial basis, polynomial with 3 degree and sigmoid. PCA used for dimensionality

42

Figure 5.1 : A preview a few images of the Database of Faces

Figure 5.2 : The faces of 40 distinct people with corresponding target in the data set

Figure 5.3 : A preview a few images of the Database of Fashion-MNIST

43

reduction of the data set and then SVM classified the images using different kernel

functions on the reduced data set. The intuition of the combined SVM with PCA is

that PCA applied to reduce the dimensions of the data set that are inputs to the SVM

as in the previous experiment. We tested the performance of our models three times

using 3-fold cross-validation.

5.3 MADELON Data Set

5.3.1 Data exploration

MADELON data set [6] is an artificial and highly non-linear which is used for

binary classification problems. The data set was one of the NIPS2003 problems [71].

There are 32 clusters in the data set. The label of the points assigned with +1 or

−1 randomly. Five-dimensional hypercube has these clusters on the vertices. Five

dimensions of the hypercube represent 5 attributes of the data set. The data set also

contains 15 linear combinations of these features which later forms into a set of 20

informative features. The samples that are based on 20 features labeled into 2 classes

that go by +-1. A number of distractor feature which is called ’probes’ were added.

They have no predictive power. Thus, there are a number of 500 features, 20 of which

are real, the remaining 480 are probes. The order of features and patterns were added

randomly.

5.3.2 Method

5.3.2.1 Data preprocessing

We imported the data set by using urllib2 [72] which is extensible library for opening

URLs. The data set consists of training set, validation set and test test. The number

of observations of these sets is shown by Table 5.1. In this experiment, we used the

training set to build models. We only standardized the features before applying the

models.

44

Figure 5.4 : Clusters of MADELON data set at a glance.

Table 5.1 : Number of observations of the training set, the validation set and the test
set of MADELON data set.

MADELON Data Set Positive ex. Negative ex. TOTAL
Training Set 1000 1000 2000
Validation Set 300 300 600
Test Set 900 900 1800
All 2200 2200 4400

5.3.2.2 Applying models

We created thirty-one different models based on the same approach with other

experiments to compare the results later. Then, we tested the performance of

our models 5-times using cross-validation to find average scores after 5 different

holdouts.

45

46

6. RESULTS

In this chapter, we presented the results of the evaluation of different models including

different parameter values on the data sets. To do this, we showed the effects

of different dimensions on the performance of PCA and LDA and different kernel

functions on the performance of SVMs. We calculated the differences between the

performances of the models by using metric measurements such as accuracy, precision,

recall, f1-score. The fit time and the score time are the other important factors to be

considered in evaluating performance of model. Because in practice the time we spend

in solving a problem is also very important. The time it takes to find the best version

of a model should also be remembered. For this reason, we took into account the run

time to compare models as well. In this way, we presented that a robust model with

appropriate parameter values improves the performance of the model.

6.1 The Olivetti Faces Data Set

We showed the scores of the LDA model with different number of components applied

on the data set in Table 6.1. We obtained the scores by changing number of components

to choosing optimal LDA model. According our study, the LDA gives us very good

scores even 2D projection on this data set. There is no difference in scores by

increasing the dimension in LDA. The only thing that changes is the slight increase

in the run time. Therefore it is the best choice to apply LDA model in 2 dimensions

for the Olivetti faces data set.

In SVM model, we used four different kernel functions which are linear, RBF,

polynomial with degree 3 and sigmoid on the data set. The objective is to find which

type of kernel function that gives the best scores. As shown in Table 6.2, there is no

significant difference between the linear kernel SVM and RBF kernel SVM and both

have better accuracy than the other kernel functions. Nonetheless, linear kernel SVM

ran faster when compared to RBF kernel SVM. The results show us that the model may

give pretty bad results when the model is used by selecting the wrong kernel such as

polynomial for this data set. We infer from the results that the kernel function needs to

47

Table 6.1 : The table shows the results of the LDA model fitted the Olivetti faces data
set for different dimensions. The optimal LDA model is highlighted.

Table 6.2 : SVM results with difference type of kernels on the Olivetti faces data set.
The optimal SVM model is highlighted.

Figure 6.1 : A comparison the SVM with different types of kernel functions on the
Olivetti faces data set.

48

Figure 6.2 : The left figure shows the plot with two features of the original Olivetti
faces data set. The right figure shows the plot of the transformed data

into two-dimensional space by PCA. Thus, the data points on the
diagonal have been rotated into the xy axis (i.e. principal components)

that maximizes the variance.

be considered for enhancing the performance of the SVM. Figure 6.1 shows the chart

of the comparison of the different types of kernel functions.

After using the SVM model, we used the SVM for face recognition on the reduced

data set by PCA. Before explaining these results, we will explain and illustrate how

we get results with the PCA and LDA. In Figure 6.2, right panel shows the original

data points in two features, while the right panel is shows the reduced data in two

dimensional space by PCA. In Figure 6.3, right panel shows the original data points

in two features, while the right panel is shows the reduced data in two dimensional

space by LDA. The reason why plotting the data points in two features is to try

to see the relationship between the features. As we know, PCA ignores the classes

whereas LDA maximizes the distance between the each class. This major difference

between the two different dimensional reduction methods seen clearly when visualized

the points. PCA also projects the data to the new coordinates that have the highest

variances called the principal components. Thus we were able to see what the biggest

variances in the face images correspond to by plotting the first and second principal

components, as shown in Figure 6.4. We also plotted average face image by computing

the per-feature empirical mean using 50D-PCA in Figure 6.5. The mean face showed

the characteristics of the faces corresponding to the two principal components.

We applied the PCA to reduced the dimension of the data set and used the SVM for

face recognition task. Thus, we reduced the run time and the high dimensional space to

catch the results of the LDA. In the data set reduced to different components by PCA,

49

Figure 6.3 : The left figure shows the plot with two features of the original Olivetti
faces data set. The right figure shows the plot of transformed data into
two-dimensional space that is the directions (i.e. linear discriminants)
represents the axes that maximize the separation between classes by

LDA.

Figure 6.4 : Plot of the first and second components choosing by 2D-PCA with their
explained variance. The characteristics of the faces corresponding to the

two components are different from each other.

Figure 6.5 : The image shows the average face of the peoples in the Olivetti faces
data set. The mean face computed by 50D-PCA.

50

the SVM was used with different types of kernel functions as shown in Table 6.3.

The accuracy of linear kernel SVM increased from 94% to 97% by implementing

30-dimensional PCA. Moreover, the run time of the linear kernel SVM decreased from

1.27 seconds to 0.02 seconds by implementing PCA. In this way, we have saved space

by reducing the number of dimensions from 4096 to 30. As shown in Table 6.4, in

generally, we obtained the better results using the SVM with PCA than using only

SVM. As the number of dimensions increases in PCA and the kernel function in SVM

changes, the corresponding accuracy can be seen in Figure 6.6.

We have listed the best of the thirty-one different models built on the data set by

comparing their scores and run times are shown in Table 6.5 and in Figure 6.7. The

obtained results show that, The 2D-LDA gave better performance in accuracy even if

we chose the best kernel in the SVM. 2D-LDA is also ran 3.7 times faster than linear

kernel SVM that has the best kernel fitted the data set. However, when we first reduced

the dimension of the data set using PCA and then classified with SVM, we got better

results in run time. Linear Kernel SVM with 30D-PCA substantially faster that is 15

times than 2D-LDA. Moreover, the scores of the Linear Kernel SVM with 30D-PCA

is almost as good as 2D-LDA. However, it should be noted that the 2D-LDA is better

for saving space. In the process of deciding the correct model according to our results

needs to be the focus on our priorities. With this approach, besides the accuracy of the

model, we may choose the model that is good in terms of speed or space depends on

our priorities.

6.2 Fashion-MNIST Data Set

Based on results of the LDA on the Fashion-MNIST data set in Table 6.6, we are able

to use LDA model to classify this data set perfectly because both the scores are good

and the run times are very short. Although our data set has 70,000 observations, it

has performed well in a very short time. Increasing the number of dimensions when

using LDA did not increase the scores. As in the previous experiment, only extended

runtime slightly.

The performance of SVM with four different kernel functions used is shown in

Table 6.7. Figure 6.8 also shows the chart of the performance of the SVM

with a different types of kernel functions. Changing kernel functions affected the

51

Table 6.3 : SVM with PCA results on the Olivetti faces data set. The best
performance of each kind of model has been highlighted in the table.

Table 6.4 : A comparison of the performance of the SVM with different types of
kernel functions on the reduced Olivetti faces data set by PCA.

Figure 6.6 : A comparison of the accuracy of the SVM with different types of kernels
on the reduced data by PCA on the Olivetti faces data set.

52

Table 6.5 : Table of the models which have the best performance in their methods.

Figure 6.7 : Accuracy and run time comparison for the best models on the Olivetti
faces data set.

Table 6.6 : The table shows the results of the LDA model fitted the Fashion-MNIST
data set for different dimensions. The optimal LDA model is highlighted.

53

Table 6.7 : SVM results with difference type of kernels on the Fashion-MNIST data
set. The optimal SVM model is highlighted.

Figure 6.8 : A comparison the SVM with different types of kernel functions on the
Fashion-MNIST data set.

performance of the SVM on the Fashion-MNIST data set. The performance of the

RBF kernel, which is better than other kernels, still did not exceed the performance of

the 2D-LDA. Because although the scores are good, the run time was 275 times the

2D-LDA.

The results obtained by using RBF kernel SVM reduced the run time from

approximately thirty minutes to one minute using RBF Kernel SVM with 15D-PCA,

while accuracy decreased slightly from 89% to 85% as shown in Table 6.8 and in

Table 6.9. The experimental results showed that when SVM was combined with PCA,

instead of using SVM alone, it saved us time to classify images, but LDA was not as

good as run-time performance. Figure 6.9 shows the chart of the performance PCA

combined SVM.

We would like to emphasize the difference of data points distribution between 2D-PCA

and 2D-LDA by showing Figure 6.10 and Figure 6.11. We plotted these data points

distributions with the same reason explained in the Olivetti faces data set. We showed

54

Table 6.8 : SVM with PCA results on the Fashion-MNIST data set. The best
performance of each kind of model has been highlighted in the table.

Table 6.9 : A comparison of the performance of the SVM with different types of
kernel functions on the reduced Fashion-MNIST data set by PCA.

the biggest variances in the fashion images correspond to by plotting the first and

second principal components, as shown in Figure 6.12. We also plotted average fashion

image by computing the per-feature empirical mean using 50D-PCA in Figure 6.13.

This average image showed the silhouettes of both top clothes and trousers.

Table 6.10 shows the set of best models has been chosen on the Fashion-MNIST data

set. In Figure 6.14, we also show the accuracy and the run time comparison for the best

models. The 2D-LDA performed much better on this data set than any other model.

This model achieved with an accuracy of 82% in 6.76 seconds. The advantages of

the 2D-LDA are that it is fast, classifies images with good accuracy and gives more

space than other models. The highest accuracy was 89% achieved by the SVM with

RBF kernel, but the run time was 275 times the 2D-LDA. We then applied the SVM

with RBF kernel on the reduced data from 784 dimensions to 15 dimensions by PCA.

PCA-SVM combination ran faster 28 times with an accuracy of 85% than only using

55

Figure 6.9 : A comparison of the accuracy of the SVM with different types of kernels
on the reduced data by PCA on the Fashion-MNIST data set.

Figure 6.10 : The left figure shows the plot with two features of the original
Fashion-MNIST data set. The right figure shows the plot of the

transformed data into two-dimensional space by PCA. Thus, the data
points on the diagonal have been rotated into the xy axis (i.e. principal

components) that maximizes the variance.

Figure 6.11 : The left figure shows the plot with two features of the original
Fashion-MNIST data set. The right figure shows the plot of transformed

data into two-dimensional space that is the directions represents the
axes that maximize the separation between classes by LDA.

56

Figure 6.12 : Plot of the first and second components choosing by 2D-PCA with their
explained variance. The first component looks like such a tshort/top or

a shoe and the second component looks like kind of a trouser or a
tshort/top.

Figure 6.13 : The image shows the average fashion item of the all images in the
Fashion-MNIST data set. The mean image computed by 50D-PCA.

57

Table 6.10 : Table of the models which have the best performance in their methods
on the Fashion-MNIST data set.

Figure 6.14 : Accuracy and run time comparison for the best models on the
Fashion-MNIST data set.

SVM. Yet, the 2D-LDA still approximately 10 times faster and save approximately 7

times more space.

6.3 MADELON Data Set

According to our results, the LDA did not classify the MADELON data set which

is highly non-linear and multivariate data set. Increasing the number of dimensions

in the LDA did not increase the scores as shown in Table 6.11. The reason for the

poor performance is that LDA works as a linear classifier and the data set is highly

non-linear. Visualizing the data points in 3D-hypercube can be seen in Figure 6.15

using three features in the data set.

When it comes to the examining the SVM, we see that it works better than the LDA.

However, when we choose the linear kernel, the result was still very poor. Furthermore,

the linear kernel worked much slower than other kernels due to the same reason is that a

highly non-linear data set. Degree 3 polynomial kernel gave very good performance by

58

Figure 6.15 : Visualizing the data points in the 3D-hypercube.

Table 6.11 : The table shows the results of the LDA model fitted the MADELON data
set for different dimensions. The optimal LDA model is highlighted.

providing non-linear decision boundary with kernel trick. We came to the conclusion

that the correct kernel selection is associated with the characteristics of the data. For

this reason, we need to investigate the effect of the different kernels on the results of

SVM. The obtained results shown by Table 6.12 and Figure 6.16.

Combined SVM and PCA was used to classify the data points as +1 or −1. In

Table 6.13 shows the results obtained using the SVM with PCA. In Table 6.14, we

summarized these results. The results show that SVM performs better on the reduced

data into the 5-dimensional space by PCA. For instance, RBF kernel SVM gave an

accuracy of %58 in 3,29 seconds, and RBF kernel SVM with 5D-PCA performed

Table 6.12 : SVM results with difference type of kernels on the MADELON Data
Set. The optimal SVM model is highlighted.

59

Figure 6.16 : A comparison the SVM with different types of kernel functions on the
MADELON data set.

Figure 6.17 : A comparison of the accuracy of the SVM with different types of
kernels on the reduced data by PCA on the MADELON data set.

better result with an accuracy of %58 in 0.08 seconds than using SVM only. The

sigmoid kernel did not fit the data, because it did not give consistent results. RBF

Kernel SVM with 5D-PCA gives excellent performance, while others such as Linear

Kernel SVM with 5D-PCA fail to classify the data set. The performance comparison

for the different types of kernels on the reduced data with different dimensions using

the PCA is shown in Figure 6.17.

Table 6.15 is the list of the models having the best performance from 38 different

models built on the MADELON data set. Figure 6.18 also shows the accuracy and

run time comparison for the best models. From these results we see that, RBF Kernel

SVM with 5D-PCA gave good results in terms of run time and speed compared to other

models. The reason of the best performance in this data set, the kernel trick enabled

60

Table 6.13 : SVM with PCA results on the MADELON data set. The best
performance of each kind of model has been highlighted in the table.

Table 6.14 : A comparison of the performance of the SVM with different types of
kernel functions on the reduced MADELON data set by PCA.

Table 6.15 : Table of the models which have the best performance in their methods
on the MADELON data set.

61

Figure 6.18 : Accuracy and run time comparison for the best models on the
MADELON data set.

the ability to generate non-linear hyperplane by using the RBF kernel function on the

highly non-linear data set. Another result we expected is that SVM performed better in

5-dimensional feature space since the MADELON data set consists of 5 real features.

As a result, LDA as a linear classifier failed to recognize the higly non-linear data set.

62

7. CONCLUSION AND RECOMMENDATIONS

This thesis provided an in-depth investigation of the theoretical foundations of three

main linear algebraic methods used in machine learning on three different data sets.

Throughout the thesis, we observed that the performance of the models we developed

vary depending on the type of data sets. We also observed that each model has different

dynamics depending on the parameters one chooses.

Specifically, LDA performed very well on the Olivetti faces data set in terms of speed,

scores and space, while the performance on the MADELON data set was very poor. We

also found that the LDA’s performance was good on the Fashion-MNIST data set, and

had the same dynamics as the Olivetti faces data set in terms of its response to changing

the parameters of the chosen model type. We observed that LDA’s performance varied

depending on the data type.

SVM was much slower on all datasets than LDA. The performance of the SVM model

was quite good on the Olivetti faces data set and Fashion-MNIST data set, but did not

exceed the LDA’s time and space performance. One important thing that we see from

the results is that the performances of the SVM models vary considerably according to

the chosen kernel. The most significant example of this difference was the linear kernel

vs the polynomial kernel on the Olivetti face data set. The polynomial kernel yielded

94% accuracy and while the linear kernel yielded 58%. On the MADELON data set,

the linear kernel performed 8.27 times slower than the polynomial kernel. Therefore,

we conclude that, the type of kernel affects both the accuracy score and the run time.

We also observed that the most appropriate kernel varies from one data set to another.

One common result we observed across all data sets is that, when we used PCA and

SVM together, we achieved better results in terms of accuracy scores, run times and

the size reduction compared to the results we obtained when we used SVM alone.

Although SVM with PCA did not catch the LDA’s performance in terms of saving

space, we were able to find models in SVM with PCA for which scores and time were

better than LDA.

63

In summary, all these results showed us that the performance of the models vary

according to the type of data set. It should be emphasized that, the best model may

also vary depending on the combination of the methods and the parameters chosen for

the methods. If we expect the model to be fast, or if we do not have enough space, we

need to consider different methods and parameters for the methods we have at hand.

7.1 Future Work

This thesis contributed to the understanding of some linear algebraic methods for

classification tasks, yet there are still many different research areas that future work

can address. Our study can extend through the use of other type of data sets for

different tasks. For instance, as future work, PCA can be applied to remote sensing data

sets. This study can be also extended using other SVM kernels such as Laplace RBF

kernel, rational quadratic kernel, multiquadric kernel, ANOVA radial basis kernel for

classification tasks. On the other hand, different learning methods such as an artificial

neural network can be applied to the same sample data, as well as these classifiers.

64

REFERENCES

[1] James, G., Witten, D., Hastie, T. and Tibshirani, R. (2013). An introduction to
statistical learning, Springer.

[2] Hastie, T., Tibshirani, R. and Friedman, J. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, Second Edition,
Springer.

[3] Bishop, C.M. (2006). Pattern recognition and machine learning, Springer
Science+ Business Media.

[4] Turk, M. and Pentland, A. (1991). Eigenfaces for Recognition, J. Cognitive
Neuroscience, 3(1), 71–86, http://dx.doi.org/10.1162/ jocn.1991.3.1.71.

[5] Xiao, H., Rasul, K. and Vollgraf, R., (2017), Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, cs.LG/1708.
07747.

[6] Guyon, I., Gunn, S., Ben-Hur, A. and Dror, G. Result analysis of the NIPS
2003 feature selection challenge, http://archive.ics.uci.edu/ml/datasets/
madelon.

[7] Li, C., Diao, Y., Ma, H. and Li, Y. (2008). A statistical PCA method for
face recognition, 2008 Second International Symposium on Intelligent
Information Technology Application, volume 3, IEEE, pp.376–380.

[8] Sirovich, L. and Kirby, M. (1987). Low-dimensional procedure for the
characterization of human faces, Josa a, 4(3), 519–524.

[9] Kirby, M. and Sirovich, L. (1990). Application of the Karhunen-Loeve procedure
for the characterization of human faces, IEEE Transactions on Pattern
analysis and Machine intelligence, 12(1), 103–108.

[10] Murase, H. and Nayar, S.K. (1995). Visual learning and recognition of 3-D
objects from appearance, International journal of computer vision, 14(1),
5–24.

[11] Murase, H., Kimura, F., Yoshimura, M. and Miyake, Y. (1981). An
improvement of the auto-correlation matrix in pattern matching method
and its application to handprinted’HIRAGANA’, Trans. IECE, 64(3),
276–283.

[12] Weng, J. (1996). Cresceptron and SHOSLIF: Toward comprehensive visual
learning, Early visual learning, 183–214.

65

[13] Nayar, S.K., Nene, S.A. and Murase, H. (1996). Subspace methods for robot
vision, IEEE Transactions on Robotics and Automation, 12(5), 750–758.

[14] Pearson, K. (1901). LIII. On lines and planes of closest fit to systems of points in
space, The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, 2(11), 559–572.

[15] Fisher, R.A. and Mackenzie, W.A. (1923). Studies in crop variation. II. The
manurial response of different potato varieties, The Journal of Agricultural
Science, 13(3), 311–320.

[16] Hotelling, H. (1933). Analysis of a complex of statistical variables into principal
components., Journal of educational psychology, 24(6), 417.

[17] Golub, G. and VanLoan, C. (1983). Matrix computations, Johns Hopkins
University Press.

[18] Mandel, J. (1982). Use of the singular value decomposition in regression analysis,
The American Statistician, 36(1), 15–24.

[19] Horn, R.A. and Johnson, C.R., (1985), Matrix Analysis: Section 2.8.

[20] Karhunen, K. (1947). Under Lineare Methoden in der Wahr Scheinlichkeitsrech-
nung, Annales Academiae Scientiarun Fennicae Series A1: Mathematia
Physica, 137.

[21] Harman, H.H. (1960). Modern factor analysis.

[22] Weare, B.C. and Nasstrom, J.S. (1982). Examples of extended empirical
orthogonal function analyses, Monthly Weather Review, 110(6), 481–485.

[23] Chatterjee, A. (2000). An introduction to the proper orthogonal decomposition,
Current science, 808–817.

[24] Gnanadesikan, R. (2011). Methods for statistical data analysis of multivariate
observations, volume321, John Wiley & Sons.

[25] Mardia, K., Kent, J. and Bibby, J. (1979). Multivariate Analysis, Academic
Press.

[26] Johnson, R.A. and Wichern, D.W. (1982). Applied multivariate statistical
analysis Prentice Hall, Inc.: Englewood Cliffs, NJ.

[27] Johffe, J. (1986). Principal Component Analysis, Springer.

[28] Belhumeur, P.N., Hespanha, J.P. and Kriegman, D.J. (1997). Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection, IEEE
Transactions on Pattern Analysis & Machine Intelligence, (7), 711–720.

[29] Swets, D.L. and Weng, J.J. (1996). Using discriminant eigenfeatures for image
retrieval, IEEE Transactions on pattern analysis and machine intelligence,
18(8), 831–836.

66

[30] Dudoit, S., Fridlyand, J. and Speed, T.P. (2002). Comparison of discrimination
methods for the classification of tumors using gene expression data,
Journal of the American statistical association, 97(457), 77–87.

[31] Weng, J. (1996). Cresceptron and SHOSLIF: Toward comprehensive visual
learning, Early visual learning, 183–214.

[32] Altman, E.I. et al. (1973). Predicting railroad bankruptcies in America, Bell
Journal of Economics, 4(1), 184–211.

[33] Tahmasebi, P., Hezarkhani, A. and Mortazavi, M. (2010). Application of
discriminant analysis for alteration separation; sungun copper deposit,
East Azerbaijan, Iran, Australian Journal of Basic and Applied Sciences,
6(4), 564–576.

[34] Preisner, O., Guiomar, R., Machado, J., Menezes, J.C. and Lopes, J.A. (2010).
Application of Fourier transform infrared spectroscopy and chemometrics
for differentiation of Salmonella enterica serovar Enteritidis phage types,
Appl. Environ. Microbiol., 76(11), 3538–3544.

[35] Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems,
Annals of eugenics, 7(2), 179–188.

[36] Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine learning,
20(3), 273–297.

[37] Vapnik, V.N. (1995). The nature of statistical learning, Theory.

[38] Pradhan, S.S., Ward, W.H., Hacioglu, K., Martin, J.H. and Jurafsky,
D. (2004). Shallow semantic parsing using support vector machines,
Proceedings of the Human Language Technology Conference of the North
American Chapter of the Association for Computational Linguistics:
HLT-NAACL 2004, pp.233–240.

[39] Barghout, L., (2015). Spatial-taxon information granules as used in iterative
fuzzy-decision-making for image segmentation, Granular Computing and
Decision-Making, Springer, pp.285–318.

[40] Veropoulos, K., Cristianini, N. and Campbell, C. (1999). The application
of support vector machines to medical decision support: a case study,
Advanced Course in Artificial Intelligence, 1–6.

[41] Fernandez, R. (1999). Predicting time series with a local support vector regression
machine, In ACAI 99, Citeseer.

[42] Vapnik, V. et al., (1998), Statistical learning theory.

[43] Boser, B.E., Guyon, I.M. and Vapnik, V.N. (1992). A training algorithm for
optimal margin classifiers, Proceedings of the fifth annual workshop on
Computational learning theory, ACM, pp.144–152.

[44] Cortes, C. and Vapnik, V. (1995). Support-vector networks, Machine learning,
20(3), 273–297.

67

[45] Veropoulos, K., Cristianini, N. and Campbell, C. (1999). The application
of support vector machines to medical decision support: a case study,
Advanced Course in Artificial Intelligence, 1–6.

[46] Tefas, A., Kotropoulos, C. and Pitas, I. (1999). Enhancing the Performance of
Elastic Graph Matching for Face Authentication by using Support Vector
Machines, IEEE Trans. on Pattern Analysis and Machine Intelligence.

[47] Alpaydin, E., (2014), Introduction to machine learning/Ethem Alpaydin.

[48] Rish, I. et al. (2001). An empirical study of the naive Bayes classifier, IJCAI
2001 workshop on empirical methods in artificial intelligence, volume 3,
pp.41–46.

[49] Lane, T. and Brodley, C.E. (1997). An application of machine learning to
anomaly detection, Proceedings of the 20th National Information Systems
Security Conference, volume377, Baltimore, USA, pp.366–380.

[50] Zhao, Q. and Bhowmick, S.S. (2003). Association rule mining: A survey,
Nanyang Technological University, Singapore.

[51] Liu, B., Hsu, W., Ma, Y. et al. (1998). Integrating classification and association
rule mining., KDD, volume 98, pp.80–86.

[52] Zhu, X. (2005). Semi-supervised learning literature survey.

[53] Cozman, F.G., Cohen, I. and Cirelo, M.C. (2003). Semi-supervised learning
of mixture models, Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp.99–106.

[54] Chen, Y., Wang, G. and Dong, S. (2003). Learning with progressive transductive
Support Vector Machine, Pattern Recognition Letters, 24.

[55] Zhu, X. and Lafferty, J. (2005). Harmonic mixtures: combining mixture models
and graph-based methods for inductive and scalable semi-supervised
learning.

[56] Blum, A. and Chawla, S. (2001). Learning from labeled and unlabeled data using
graph mincuts.

[57] Smith, L. (2002). A tutorial on principal components analysis, Cornell University,
USA, 52.

[58] Shores, T.S. (2007). Applied linear algebra and matrix analysis, volume2541,
Springer.

[59] Chunming Li, Yanhua Diao, H.M.Y.L. (2008). A Statistical PCA Method for
Face Recognition, 3, 376–380.

[60] Lewicki, M.S. and Sejnowski, T.J. (2000). Learning overcomplete representa-
tions, Neural computation, 12.

[61] Schölkopf, L., Smola, A. and Müller, K. (1997). Kernel Principal Component
Analysis.

68

[62] Le Roux, B. and Rouanet, H. (2004). Geometric data analysis: from
correspondence analysis to structured data analysis, Springer Science &
Business Media.

[63] Madsen, R.E., Hansen, L.K. and Winther, O. (2004). Singular value
decomposition and principal component analysis, Rasmus Elsborg
Madsen,.

[64] S. Balakrishnama, A.G. LINEAR DISCRIMINANT ANALYSIS - A BRIEF
TUTORIAL.

[65] Siqueira, L.F., Júnior, R.F.A., de Araújo, A.A., Morais, C.L. and Lima, K.M.
(2017). LDA vs. QDA for FT-MIR prostate cancer tissue classification,
Chemometrics and Intelligent Laboratory Systems, 162, 123–129.

[66] Chen, W.H., Hsu, S.H. and Shen, H.P. (2005). Application of SVM and
ANN for intrusion detection, Computers & Operations Research, 32(10),
2617–2634.

[67] Smits, G.F. and Jordaan, E.M. (2002). Improved SVM regression using mixtures
of kernels, Proceedings of the 2002 International Joint Conference on
Neural Networks. IJCNN’02 (Cat. No. 02CH37290), volume 3, IEEE,
pp.2785–2790.

[68] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J.,
Passos, A., Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay,
E. (2011). Scikit-learn: Machine Learning in Python, Journal of Machine
Learning Research, 12, 2825–2830.

[69] McKinney, W. (2010). Data Structures for Statistical Computing in Python,
S. van der Walt and J. Millman, editors, Proceedings of the 9th Python in
Science Conference, pp.51 – 56.

[70] Xiao, H., Rasul, K. and Vollgraf, R., (2017), Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms, cs.LG/1708.
07747.

[71] Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature
selection, Journal of machine learning research, 3(Mar), 1157–1182.

[72] urllib2, Extensible library for opening URLs, https://docs.python.org/2/ library/
urllib2.html.

69

70

APPENDICES

APPENDIX A.1 : Python Codes for Olivetti Faces Data Set
APPENDIX A.2 : Python Codes for Fashion-MNIST Data Set
APPENDIX A.3 : Python Codes for MADELON Data Set

71

72

APPENDIX A.1

1.1 Olivetti Faces Data Set

1.1.1 Data preprocessing

I m p o r t i n g l i b r a r i e s

from s k l e a r n import d a t a s e t s
import numpy as np
import pandas as pd
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
from s k l e a r n . m o d e l _ s e l e c t i o n import c r o s s _ v a l i d a t e
from s k l e a r n . d i s c r i m i n a n t _ a n a l y s i s import L i n e a r D i s c r i m i n a n t A n a l y s i s
from s k l e a r n . svm import SVC
from s k l e a r n . d e c o m p o s i t i o n import PCA
import m a t p l o t l i b . p y p l o t a s p l t
import s e a b o r n as s n s

I m p o r t i n g t h e da ta s e t

f a c e s = d a t a s e t s . f e t c h _ o l i v e t t i _ f a c e s ()
d f = pd . DataFrame (d a t a = f a c e s . da t a , i n d e x =range (4 0 0))

Showing t h e 40 d i s t i n c t p e o p l e

f i g = p l t . f i g u r e (f i g s i z e = (1 6 , 8))
f o r i in range (4 0) :

ax= f i g . a d d _ s u b p l o t (4 , 1 0 , i +1 , x t i c k s =[i] , y t i c k s = [])
ax . imshow (f a c e s . images [i ∗10] , cmap= p l t . cm . bone)

Showing t h e a l l images

f i g = p l t . f i g u r e (f i g s i z e = (6 4 , 6 4))
f o r i in range (4 0 0) :

ax= f i g . a d d _ s u b p l o t (2 5 , 1 6 , i +1 , x t i c k s = [] , y t i c k s = [])
ax . imshow (f a c e s . images [i] , cmap= p l t . cm . bone)

F e a t u r e S c a l i n g

s c l = S t a n d a r d S c a l e r ()
f a c e s _ d a t a = s c l . f i t _ t r a n s f o r m (f a c e s . d a t a)

1.1.2 Applying models

Trans formed da ta by LDA

l d a = L i n e a r D i s c r i m i n a n t A n a l y s i s (n_components =2)
X _ t r a i n _ l d a = l d a . f i t (f a c e s _ d a t a , f a c e s . t a r g e t)
X _ t r a i n = l d a . t r a n s f o r m (f a c e s _ d a t a)

f i g = p l t . f i g u r e (f i g s i z e = (1 5 , 5))
f i g . a d d _ s u b p l o t (1 , 2 , 1)
p l t . s c a t t e r (f a c e s _ d a t a [: , 0] , f a c e s _ d a t a [: , 1] , a l p h a = 0 . 2 , c= f a c e s . t a r g e t , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F e a t u r e 1 ’)
p l t . y l a b e l (’ F e a t u r e 2 ’)
f i g . a d d _ s u b p l o t (1 , 3 , 2)
p l t . s c a t t e r (f a c e s _ d a t a [: , 0] , f a c e s _ d a t a [: , 2] , a lpha =0.2 , c=f a c e s . t a r g e t , cmap=’ v i r i d i s ’)
f i g . a d d _ s u b p l o t (1 , 2 , 2)
p l t . s c a t t e r (X _ t r a i n [: , 0] , X _ t r a i n [: , 1] , a l p h a = 0 . 2 , c= f a c e s . t a r g e t , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’LDA1 ’)
p l t . y l a b e l (’LDA2 ’)

P e r f o r m i n g LDA

d imens ion = [2 , 5 , 1 5]

f o r i in d imens ion :
l d a = L i n e a r D i s c r i m i n a n t A n a l y s i s (n_components = i)
s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (lda , f a c e s _ d a t a , f a c e s . t a r g e t , s c o r i n g = s c o r i n g , cv = 3)
p r i n t (’ {}D−LDA’ . format (i))
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

73

P e r f o r m i n g SVM w i t h d i f f e r e n t k e r n e l s

models = []
models . append ((" L inea r−SVM" ,SVC(k e r n e l = ’ l i n e a r ’)))
models . append (("RBF−SVM" ,SVC(k e r n e l = ’ r b f ’)))
models . append ((" Po lynomia l−SVM" ,SVC(k e r n e l = ’ po ly ’)))
models . append ((" Sigmoid−SVM" ,SVC(k e r n e l = ’ s igmoid ’)))

f o r name , model in models :

s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (model , f a c e s _ d a t a , f a c e s . t a r g e t , s c o r i n g = s c o r i n g , cv = 3)
p r i n t (name)
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

P e r f o r m i n g PCA

pca = PCA(n_components = 400 , s v d _ s o l v e r = ’ randomized ’ , wh i t en = True) . f i t (f a c e s _ d a t a)
X _ t r a i n _ p c a = pca . t r a n s f o r m (f a c e s _ d a t a)
d imens ion =np . a r r a y (range (1 , 4 0 1))
v a r i a n c e =(pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _)
va r i ance_cum =np . cumsum (v a r i a n c e)
p l t . f i g u r e (f i g s i z e = (9 , 5))
p r i n t (p l t . p l o t (d imens ion , va r i ance_cum))
p l t . t i t l e (’ P e r c e n t a g e o f v a r i a n c e e x p l a i n e d by each of t h e s e l e c t e d components ’)
p l t . x l a b e l (’ P r i n c i p a l components ’)
p l t . y l a b e l (’ E x p l a i n e d V a r i a n c e R a t i o ’)
p l t . show ()

P e r f o r m i n g 2D−PCA

pca = PCA(n_components = 2 , s v d _ s o l v e r = ’ randomized ’ , wh i t en = True) . f i t (f a c e s _ d a t a)
X _ t r a i n _ p c a = pca . t r a n s f o r m (f a c e s _ d a t a)
f i g = p l t . f i g u r e (f i g s i z e = (1 5 , 5))
f i g . a d d _ s u b p l o t (1 , 2 , 1)
p l t . s c a t t e r (f a c e s _ d a t a [: , 0] , f a c e s _ d a t a [: , 1] , a l p h a = 0 . 2 , c= f a c e s . t a r g e t , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F e a t u r e 1 ’)
p l t . y l a b e l (’ F e a t u r e 2 ’)
f i g . a d d _ s u b p l o t (1 , 2 , 2)
p l t . s c a t t e r (X _ t r a i n _ p c a [: , 0] , X _ t r a i n _ p c a [: , 1] , a l p h a = 0 . 2 , c= f a c e s . t a r g e t , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F i r s t P r i n c i p a l Component ’)
p l t . y l a b e l (’ Second P r i n c i p a l Component ’)

V i s u a l i z e t h e r e s u l t o f 2D−PCA

p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)

f i g , a x a r r = p l t . s u b p l o t s (1 , 2 , f i g s i z e =(15 , 5))

s n s . heatmap (pca . components_ [0 , :] . r e s h a p e (6 4 , 6 4) , ax= a x a r r [0] , cmap= ’ g r a y _ r ’)
s n s . heatmap (pca . components_ [1 , :] . r e s h a p e (6 4 , 6 4) , ax= a x a r r [1] , cmap= ’ g r a y _ r ’)
a x a r r [0] . s e t _ t i t l e (

" { 0 : . 2 f}% E x p l a i n e d V a r i a n c e " . format (pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ [0]∗1 0 0) ,
f o n t s i z e =12

)
a x a r r [1] . s e t _ t i t l e (

" { 0 : . 2 f}% E x p l a i n e d V a r i a n c e " . format (pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ [1]∗1 0 0) ,
f o n t s i z e =12

)
a x a r r [0] . s e t _ a s p e c t (’ e q u a l ’)
a x a r r [1] . s e t _ a s p e c t (’ e q u a l ’)

p l t . s u p t i t l e (’ 2D−PCA ’)

Showing t h e average f a c e by 50D−PCA

pca=PCA(n_components =50 , wh i t e n =True)
pca . f i t (f a c e s . d a t a)
f i g , ax= p l t . s u b p l o t s (1 , 1 , f i g s i z e = (5 , 5))
ax . imshow (pca . mean_ . r e s h a p e ((6 4 , 6 4)) , cmap=" g ray ")
ax . s e t _ x t i c k s ([])
ax . s e t _ y t i c k s ([])
ax . s e t _ t i t l e (’ Average Face ’)

74

APPENDIX A.2

1.2 Fashion-MNIST Data Set

1.2.1 Data preprocessing

I m p o r t i n g l i b r a r i e s

import numpy as np
import pandas as pd
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
from s k l e a r n . m o d e l _ s e l e c t i o n import c r o s s _ v a l i d a t e
from s k l e a r n . d i s c r i m i n a n t _ a n a l y s i s import L i n e a r D i s c r i m i n a n t A n a l y s i s
from s k l e a r n . svm import SVC
from s k l e a r n . d e c o m p o s i t i o n import PCA
import m a t p l o t l i b . p y p l o t a s p l t
import s e a b o r n as s n s

I m p o r t i n g t h e da ta s e t

df = pd . r e a d _ c s v (" f a s h i o n−m n i s t . c sv ")

Data P r e p r o c e s s i n g

x = df . i l o c [: , 1 :]
y = df . i l o c [: , 0]

D i s p l a y f i r s t image

i m a g e s _ a r r a y = np . a r r a y (x)
s n s . heatmap (i m a g e s _ a r r a y [0 , :] . r e s h a p e (2 8 , 28))

D i s p l a y f i r s t 3 images

p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)
f i g , a x a r r = p l t . s u b p l o t s (1 , 3 , f i g s i z e = (7 , 3))
a= s n s . heatmap (i m a g e s _ a r r a y [0 , :] . r e s h a p e (2 8 , 2 8) , ax = a x a r r [0] , cmap = ’ g r a y _ r ’)
a . s e t (x t i c k s = [])
a . s e t (y t i c k s = [])
b= s n s . heatmap (i m a g e s _ a r r a y [1 , :] . r e s h a p e (2 8 , 2 8) , ax = a x a r r [1] , cmap = ’ g r a y _ r ’)
b . s e t (x t i c k s = [])
b . s e t (y t i c k s = [])
c= s n s . heatmap (i m a g e s _ a r r a y [2 , :] . r e s h a p e (2 8 , 2 8) , ax = a x a r r [2] , cmap = ’ g r a y _ r ’)
c . s e t (x t i c k s = [])
c . s e t (y t i c k s = [])
p l t . s u p t i t l e (’ V i s u a l i z e t h e f i r s t 3 images from t h e d a t a s e t ’)

F e a t u r e S c a l i n g

s c l = S t a n d a r d S c a l e r ()
X = s c l . f i t _ t r a n s f o r m (x)

1.2.2 Applying models

Trans formed da ta by LDA

l d a = L i n e a r D i s c r i m i n a n t A n a l y s i s (n_components =2)
X _ t r a i n _ l d a = l d a . f i t (X, y)
X _ t r a i n = l d a . t r a n s f o r m (X)

f i g = p l t . f i g u r e (f i g s i z e = (1 5 , 5))
f i g . a d d _ s u b p l o t (1 , 2 , 1)
p l t . s c a t t e r (X[: , 0] , X[: , 1] , a l p h a = 0 . 2 , c=y , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F e a t u r e 1 ’)
p l t . y l a b e l (’ F e a t u r e 2 ’)
f i g . a d d _ s u b p l o t (1 , 3 , 2)
p l t . s c a t t e r (f a c e s _ d a t a [: , 0] , f a c e s _ d a t a [: , 2] , a lpha =0.2 , c=f a c e s . t a r g e t , cmap=’ v i r i d i s ’)
f i g . a d d _ s u b p l o t (1 , 2 , 2)
p l t . s c a t t e r (X _ t r a i n [: , 0] , X _ t r a i n [: , 1] , a l p h a = 0 . 2 , c=y , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’LDA1 ’)
p l t . y l a b e l (’LDA2 ’)

P e r f o r m i n g LDA

d imens ion = [2 , 5 , 1 5]

f o r i in d imens ion :
l d a = L i n e a r D i s c r i m i n a n t A n a l y s i s (n_components = i)
s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (lda , X, y , s c o r i n g = s c o r i n g , cv = 3)
p r i n t (’ {}D−LDA’ . format (i))
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))

75

p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

P e r f o r m i n g SVM w i t h d i f f e r e n t k e r n e l s

models = []
models . append ((" L inea r−SVM" , SVC(k e r n e l = ’ l i n e a r ’)))
models . append (("RBF−SVM" , SVC(k e r n e l = ’ r b f ’)))
models . append ((" Po lynomia l−SVM" , SVC(k e r n e l = ’ po ly ’)))
models . append ((" Sigmoid−SVM" , SVC(k e r n e l = ’ s igmoid ’)))

f o r name , model in models :

s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (model , X, y , s c o r i n g = s c o r i n g , cv = 3)
p r i n t (name)
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)
p r i n t (’−−− ’)

P e r f o r m i n g PCA

pca = PCA(n_components = 784 , s v d _ s o l v e r = ’ randomized ’ , wh i t en = True) . f i t (X)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X)
d imens ion =np . a r r a y (range (1 , 7 8 5))
v a r i a n c e =(pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _)
va r i ance_cum =np . cumsum (v a r i a n c e)
p l t . f i g u r e (f i g s i z e = (9 , 5))
p l t . p l o t (d imens ion , va r i ance_cum)
p l t . t i t l e (’ P e r c e n t a g e o f v a r i a n c e e x p l a i n e d by each of t h e s e l e c t e d components ’)
p l t . x l a b e l (’ P r i n c i p a l components ’)
p l t . y l a b e l (’ E x p l a i n e d V a r i a n c e R a t i o ’)
p l t . show ()
p r i n t (v a r i a n c e . sum ())

P e r f o r m i n g 2D−PCA

pca = PCA(n_components = 2 , s v d _ s o l v e r = ’ randomized ’ , wh i t en = True) . f i t (X)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X)
f i g = p l t . f i g u r e (f i g s i z e = (1 5 , 5))
f i g . a d d _ s u b p l o t (1 , 2 , 1)
p l t . s c a t t e r (X[: , 0] , X[: , 1] , a l p h a = 0 . 2 , c=y , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F e a t u r e 1 ’)
p l t . y l a b e l (’ F e a t u r e 2 ’)
f i g . a d d _ s u b p l o t (1 , 2 , 2)
p l t . s c a t t e r (X _ t r a i n _ p c a [: , 0] , X _ t r a i n _ p c a [: , 1] , a l p h a = 0 . 2 , c=y , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F i r s t P r i n c i p a l Component ’)
p l t . y l a b e l (’ Second P r i n c i p a l Component ’)

V i s u a l i z e t h e r e s u l t o f 2D−PCA

p l t . s t y l e . use (’ f i v e t h i r t y e i g h t ’)

f i g , a x a r r = p l t . s u b p l o t s (1 , 2 , f i g s i z e =(15 , 5))

s n s . heatmap (pca . components_ [0 , :] . r e s h a p e (2 8 , 2 8) , ax= a x a r r [0] , cmap= ’ g r a y _ r ’)
s n s . heatmap (pca . components_ [1 , :] . r e s h a p e (2 8 , 2 8) , ax= a x a r r [1] , cmap= ’ g r a y _ r ’)

a x a r r [0] . s e t _ t i t l e (
" { 0 : . 2 f}% E x p l a i n e d V a r i a n c e " . format (pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ [0]∗1 0 0) ,
f o n t s i z e =12

)
a x a r r [1] . s e t _ t i t l e (

" { 0 : . 2 f}% E x p l a i n e d V a r i a n c e " . format (pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _ [1]∗1 0 0) ,
f o n t s i z e =12

)
a x a r r [0] . s e t _ a s p e c t (’ e q u a l ’)
a x a r r [1] . s e t _ a s p e c t (’ e q u a l ’)

p l t . s u p t i t l e (’ 2D−PCA ’)

Showing t h e average f a s h i o n i t e m by PCA

pca=PCA(n_components =50 , wh i t e n =True)
pca . f i t (x)
f i g , ax= p l t . s u b p l o t s (1 , 1 , f i g s i z e = (5 , 5))
ax . imshow (pca . mean_ . r e s h a p e ((2 8 , 2 8)) , cmap=" g ray ")
ax . s e t _ x t i c k s ([])
ax . s e t _ y t i c k s ([])
ax . s e t _ t i t l e (’ Average F a s h i o n Image ’)

P e r f o r m i n g SVM w i t h d i f f e r e n t k e r n e l s a f t e r a p p l y i n g PCA

d imens ion = [2 , 5 , 1 5 , 2 0 , 3 0 , 5 0]
models = []
models . append ((" L i n e a r " ,SVC(k e r n e l = ’ l i n e a r ’)))
models . append (("RBF" ,SVC(k e r n e l = ’ r b f ’)))
models . append ((" P o l y n o m i a l " ,SVC(k e r n e l = ’ po ly ’)))
models . append ((" Sigmoid " ,SVC(k e r n e l = ’ s igmoid ’)))

f o r i in d imens ion :
pca = PCA(n_components = i , s v d _ s o l v e r = ’ randomized ’ , wh i t e n = True) . f i t (X)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X)

76

f o r name , model in models :
s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (model , X _ t r a i n _ p c a , y , s c o r i n g = s c o r i n g , cv = 5)
p r i n t (’ P e r f o r m i n g SVM wi th {} k e r n e l a f t e r a p p l y i n g {}D−PCA ’ . format (name , i))
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Score Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)
p r i n t (’−−− ’)

77

APPENDIX A.3

1.3 MADELON Data Set

1.3.1 Data preprocessing

I m p o r t i n g l i b r a r i e s

import u r l l i b . r e q u e s t a s u r l l i b 2
import numpy as np
from s k l e a r n . p r e p r o c e s s i n g import S t a n d a r d S c a l e r
from s k l e a r n . m o d e l _ s e l e c t i o n import c r o s s _ v a l i d a t e
from s k l e a r n . d i s c r i m i n a n t _ a n a l y s i s import L i n e a r D i s c r i m i n a n t A n a l y s i s
from s k l e a r n . svm import SVC
from s k l e a r n . d e c o m p o s i t i o n import PCA
import m a t p l o t l i b . p y p l o t a s p l t
import s e a b o r n as s n s
from m p l _ t o o l k i t s . mplot3d import axes3d

I m p o r t i n g t h e da ta s e t

t r a i n _ d a t a _ u r l = ’ h t t p s : / / a r c h i v e . i c s . u c i . edu / ml / machine−l e a r n i n g−d a t a b a s e s / madelon /MADELON/ m a d e l o n _ t r a i n . d a t a ’
v a l _ d a t a _ u r l = ’ h t t p s : / / a r c h i v e . i c s . u c i . edu / ml / machine−l e a r n i n g−d a t a b a s e s / madelon /MADELON/ m a d e l o n _ v a l i d . d a t a ’
t r a i n _ r e s p _ u r l = ’ h t t p s : / / a r c h i v e . i c s . u c i . edu / ml / machine−l e a r n i n g−d a t a b a s e s / madelon /MADELON/ m a d e l o n _ t r a i n . l a b e l s ’
v a l _ r e s p _ u r l = ’ h t t p s : / / a r c h i v e . i c s . u c i . edu / ml / machine−l e a r n i n g−d a t a b a s e s / madelon / m a d e l o n _ v a l i d . l a b e l s ’
t e s t _ d a t a _ u r l = ’ h t t p : / / a r c h i v e . i c s . u c i . edu / ml / machine−l e a r n i n g−d a t a b a s e s / madelon /MADELON/ m a d e l o n _ t e s t . d a t a ’
x _ t r a i n = np . l o a d t x t (u r l l i b 2 . u r l o p e n (t r a i n _ d a t a _ u r l))
y _ t r a i n = np . l o a d t x t (u r l l i b 2 . u r l o p e n (t r a i n _ r e s p _ u r l))
x _ v a l = np . l o a d t x t (u r l l i b 2 . u r l o p e n (v a l _ d a t a _ u r l))
y _ v a l = np . l o a d t x t (u r l l i b 2 . u r l o p e n (v a l _ r e s p _ u r l))

F e a t u r e S c a l i n g

s c l = S t a n d a r d S c a l e r ()
X _ t r a i n = s c l . f i t _ t r a n s f o r m (x _ t r a i n)

V i s u a l i z e Hypercube i n 3D

f i g = p l t . f i g u r e (f i g s i z e = (5 , 5))
ax = f i g . a d d _ s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)
X_1 = X _ t r a i n [: , 0]
X_2 = X _ t r a i n [: , 1]
X_3 = X _ t r a i n [: , 2]
ax . s c a t t e r (X_1 , X_2 , X_3 , c = y _ t r a i n)
cmaps = ’magma ’
ax . v i e w _ i n i t (3 0 , 2 0)

1.3.2 Applying models

P e r f o r m i n g LDA

d imens ion = [2 , 5 , 1 5]
f o r i in d imens ion :

l d a = L i n e a r D i s c r i m i n a n t A n a l y s i s (n_components = i)
s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (lda , X _ t r a i n , y _ t r a i n , s c o r i n g = s c o r i n g , cv = 5)
p r i n t (’ {}D−LDA’ . format (i))
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

P e r f o r m i n g SVM w i t h d i f f e r e n t k e r n e l s

models = []
models . append ((" L inea r−SVM" , SVC(k e r n e l = ’ l i n e a r ’)))
models . append (("RBF−SVM" , SVC(k e r n e l = ’ r b f ’)))
models . append ((" Po lynomia l−SVM" , SVC(k e r n e l = ’ po ly ’)))
models . append ((" Sigmoid−SVM" , SVC(k e r n e l = ’ s igmoid ’)))

f o r name , model in models :

s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (model , X _ t r a i n , y _ t r a i n , s c o r i n g = s c o r i n g , cv = 5)
p r i n t (name)
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Sco re Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))

78

p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

P e r f o r m i n g PCA

pca = PCA(n_components = 500 , s v d _ s o l v e r = ’ randomized ’ , wh i t e n = True) . f i t (X _ t r a i n)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X _ t r a i n)
d imens ion =np . a r r a y (range (1 , 5 0 1))
v a r i a n c e =(pca . e x p l a i n e d _ v a r i a n c e _ r a t i o _)
va r i ance_cum =np . cumsum (v a r i a n c e)
p l t . f i g u r e (f i g s i z e = (9 , 5))
p l t . p l o t (d imens ion , va r i ance_cum)
p l t . t i t l e (’ P e r c e n t a g e o f v a r i a n c e e x p l a i n e d by each of t h e s e l e c t e d components ’)
p l t . x l a b e l (’ P r i n c i p a l components ’)
p l t . y l a b e l (’ E x p l a i n e d V a r i a n c e R a t i o ’)
p l t . show ()

V i s u a l i z e da ta p o i n t s on 3D−Hypercube

f i g = p l t . f i g u r e (f i g s i z e = (5 , 5))
ax = f i g . a d d _ s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)

X_1 = X _ t r a i n [: , 0]
X_2 = X _ t r a i n [: , 1]
X_3 = X _ t r a i n [: , 2]
ax . s c a t t e r (X_1 , X_2 , X_3 , c = y _ t r a i n)
cmaps = ’magma ’
ax . v i e w _ i n i t (3 0 , 2 0)

pca = PCA(n_components = 3 , s v d _ s o l v e r = ’ randomized ’ , wh i t e n = True) . f i t (X _ t r a i n)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X _ t r a i n)

from m p l _ t o o l k i t s . mplot3d import axes3d
f i g = p l t . f i g u r e (f i g s i z e = (5 , 5))
ax = f i g . a d d _ s u b p l o t (1 1 1 , p r o j e c t i o n = ’ 3d ’)

X_1 = X _ t r a i n _ p c a [: , 0]
X_2 = X _ t r a i n _ p c a [: , 1]
X_3 = X _ t r a i n _ p c a [: , 2]
ax . s c a t t e r (X_1 , X_2 , X_3 , c = y _ t r a i n)
cmaps = ’magma ’
ax . v i e w _ i n i t (3 0 , 2 0)

P e r f o r m i n g 2D−PCA

pca = PCA(n_components = 2 , s v d _ s o l v e r = ’ randomized ’ , wh i t e n = True) . f i t (X _ t r a i n)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X _ t r a i n)
f i g = p l t . f i g u r e (f i g s i z e = (1 5 , 5))
f i g . a d d _ s u b p l o t (1 , 2 , 1)
p l t . s c a t t e r (X _ t r a i n [: , 0] , X _ t r a i n [: , 1] , a l p h a = 0 . 2 , c= y _ t r a i n , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F e a t u r e 1 ’)
p l t . y l a b e l (’ F e a t u r e 2 ’)
f i g . a d d _ s u b p l o t (1 , 2 , 2)
p l t . s c a t t e r (X _ t r a i n _ p c a [: , 0] , X _ t r a i n _ p c a [: , 1] , a l p h a = 0 . 2 , c= y _ t r a i n , cmap= ’ v i r i d i s ’)
p l t . x l a b e l (’ F i r s t P r i n c i p a l Component ’)
p l t . y l a b e l (’ Second P r i n c i p a l Component ’)

P e r f o r m i n g SVM w i t h d i f f e r e n t k e r n e l s a f t e r a p p l y i n g PCA

d imens ion = [2 , 5 , 1 5 , 2 0 , 3 0 , 5 0]
models = []
models . append ((" L i n e a r " , SVC(k e r n e l = ’ l i n e a r ’)))
models . append (("RBF" , SVC(k e r n e l = ’ r b f ’)))
models . append ((" P o l y n o m i a l " , SVC(k e r n e l = ’ po ly ’)))
models . append ((" Sigmoid " , SVC(k e r n e l = ’ s igmoid ’)))

f o r i in d imens ion :
pca = PCA(n_components = i , s v d _ s o l v e r = ’ randomized ’ , wh i t e n = True) . f i t (X _ t r a i n)
X _ t r a i n _ p c a = pca . t r a n s f o r m (X _ t r a i n)
f o r name , model in models :

s c o r i n g = [’ a c c u r a c y ’ , ’ p r e c i s i o n _ m a c r o ’ , ’ r e c a l l _ m a c r o ’ , ’ f1_macro ’]
s c o r e s = c r o s s _ v a l i d a t e (model , X _ t r a i n _ p c a , y _ t r a i n , s c o r i n g = s c o r i n g , cv = 5)
p r i n t (’ P e r f o r m i n g SVM wi th {} k e r n e l a f t e r a p p l y i n g {}D−PCA ’ . format (name , i))
p r i n t (’ F i t Time ’ , s c o r e s [’ f i t _ t i m e ’] . mean () . round (3))
p r i n t (’ Score Time ’ , s c o r e s [’ s c o r e _ t i m e ’] . mean () . round (3))
p r i n t (" Accuracy : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ a c c u r a c y ’] . mean () , s c o r e s [’ t e s t _ a c c u r a c y ’] . s t d () ∗ 2))
p r i n t (" P r e c i s i o n : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ p r e c i s i o n _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" R e c a l l : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ r e c a l l _ m a c r o ’] . s t d () ∗ 2))
p r i n t (" f1−s c o r e : %0.2 f (+/− %0.2 f) " % (s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . mean () , s c o r e s [’ t e s t _ f 1 _ m a c r o ’] . s t d () ∗ 2))
p r i n t (s c o r e s)

79

80

CURRICULUM VITAE

Name Surname: Elif ALTUNOK

Place and Date of Birth: Zile, 27 July 1992

E-Mail: altunokelif@gmail.com

EDUCATION:

• B.Sc.: 2013, Mimar Sinan Fine Arts University, Faculty of Science and Letters,
Mathematics, GPA: 3,32

PROFESSIONAL EXPERIENCE:

• 2018-2019 Istanbul Technical University - Scientific Researcher at Tubitak project

• 2013-2017 Shell Upstream Turkey B.V. - Financial Reporting Analyst

PUBLICATIONS:

• Külekci O., Öztürk Y., Altunok, E., Altıniğne C. Y., 2019. Enumerative Data
Compression with Non-Uniquely Decodable Codes. Working paper, Cornell
University, arXiv.org

81

